Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36669473

ABSTRACT

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Subject(s)
Bone Regeneration , Lymphatic Vessels , Aged , Animals , Humans , Mice , Endothelial Cells , Lymphangiogenesis
2.
Nat Cardiovasc Res ; 1: 918-932, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36531334

ABSTRACT

The mammalian skeletal system shows sex differences in structure, functions, ageing and disease incidences. The role of blood vessels in physiological, regenerative and pathological bone functions indicates the requisite to understanding their sex specificity. Here, we find oestrogen regulates blood vessel physiology during pregnancy and menopause through oestrogen receptor alpha (ERα) and G-protein coupled oestrogen receptor-1 (Gper1) but not ERß-dependent signalling in mice. Oestrogen regulates BECs' lipid use and promotes lipolysis of adipocytes and FA uptake from the microenvironment. Low oestrogen conditions skew endothelial FA metabolism to accumulate lipid peroxides (LPO), leading to vascular ageing. High ferrous ion levels in female BECs intensify LPO accumulation and accelerate the ageing process. Importantly, inhibiting LPO generation using liproxstatin-1 in aged mice significantly improved bone heath. Thus, our findings illustrate oestrogen's effects on BECs and suggest LPO targeting could be an efficient strategy to manage blood and bone health in females.

3.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33536212

ABSTRACT

Blood vessels provide supportive microenvironments for maintaining tissue functions. Age-associated vascular changes and their relation to tissue aging and pathology are poorly understood. Here, we perform 3D imaging of young and aging vascular beds. Multiple organs in mice and humans demonstrate an age-dependent decline in vessel density and pericyte numbers, while highly remodeling tissues such as skin preserve the vasculature. Vascular attrition precedes the appearance of cellular hallmarks of aging such as senescence. Endothelial VEGFR2 loss-of-function mice demonstrate that vascular perturbations are sufficient to stimulate cellular changes coupled with aging. Age-associated tissue-specific molecular changes in the endothelium drive vascular loss and dictate pericyte to fibroblast differentiation. Lineage tracing of perivascular cells with inducible PDGFRß and NG2 Cre mouse lines demonstrated that increased pericyte to fibroblast differentiation distinguishes injury-induced organ fibrosis and zymosan-induced arthritis. To spur further discoveries, we provide a freely available resource with 3D vascular and tissue maps.

4.
EMBO J ; 40(1): e105242, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33215738

ABSTRACT

Age-associated alterations of the hormone-secreting endocrine system cause organ dysfunction and disease states. However, the cell biology of endocrine tissue ageing remains poorly understood. Here, we perform comparative 3D imaging to understand age-related perturbations of the endothelial cell (EC) compartment in endocrine glands. Datasets of a wide range of markers highlight a decline in capillary and artery numbers, but not of perivascular cells in pancreas, testis and thyroid gland, with age in mice and humans. Further, angiogenesis and ß-cell expansion in the pancreas are coupled by a distinct age-dependent subset of ECs. While this EC subpopulation supports pancreatic ß cells, it declines during ageing concomitant with increased expression of the gap junction protein Gja1. EC-specific ablation of Gja1 restores ß-cell expansion in the aged pancreas. These results provide a proof of concept for understanding age-related vascular changes and imply that therapeutic targeting of blood vessels may restore aged endocrine tissue function. This comprehensive data atlas offers over > 1,000 multicolour volumes for exploration and research in endocrinology, ageing, matrix and vascular biology.


Subject(s)
Aging/physiology , Endocrine System/physiology , Endothelial Cells/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Blood Vessels , Endocrine Glands/physiology , Female , Humans , Imaging, Three-Dimensional/methods , Insulin-Secreting Cells/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/pathology , Pancreas/physiology , Testis/physiology , Thyroid Gland/physiology , Young Adult
5.
Front Cell Dev Biol ; 8: 602278, 2020.
Article in English | MEDLINE | ID: mdl-33330496

ABSTRACT

Recent advances in our understanding of blood vessels and vascular niches in bone convey their critical importance in regulating bone development and physiology. The contribution of blood vessels in bone functions and remodeling has recently gained enormous interest because of their therapeutic potential. The mammalian skeletal system performs multiple functions in the body to regulate growth, homeostasis and metabolism. Blood vessels provide support to various cell types in bone and maintain functional niches in the bone marrow microenvironment. Heterogeneity within blood vessels and niches indicate the importance of specialized vascular niches in regulating skeletal functions. In this review, we discuss physiology of bone vasculature and their specialized niches for hematopoietic stem cells and mesenchymal progenitor cells. We provide clinical and experimental information available on blood vessels during physiological bone remodeling.

6.
J Bone Miner Res ; 35(11): 2103-2120, 2020 11.
Article in English | MEDLINE | ID: mdl-32845550

ABSTRACT

Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Diseases , Bone Marrow , Bone and Bones , Hematopoiesis , Humans , Osteogenesis , Stem Cell Niche
7.
JCI Insight ; 4(13)2019 07 11.
Article in English | MEDLINE | ID: mdl-31292293

ABSTRACT

Bone provides supportive microenvironments for hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) and is a frequent site of metastasis. While incidences of bone metastases increase with age, the properties of the bone marrow microenvironment that regulate dormancy and reactivation of disseminated tumor cells (DTCs) remain poorly understood. Here, we elucidate the age-associated changes in the bone secretome that trigger proliferation of HSCs, MSCs, and DTCs in the aging bone marrow microenvironment. Remarkably, a bone-specific mechanism involving expansion of pericytes and induction of quiescence-promoting secretome rendered this proliferative microenvironment resistant to radiation and chemotherapy. This bone-specific expansion of pericytes was triggered by an increase in PDGF signaling via remodeling of specialized type H blood vessels in response to therapy. The decline in bone marrow pericytes upon aging provides an explanation for loss of quiescence and expansion of cancer cells in the aged bone marrow microenvironment. Manipulation of blood flow - specifically, reduced blood flow - inhibited pericyte expansion, regulated endothelial PDGF-B expression, and rendered bone metastatic cancer cells susceptible to radiation and chemotherapy. Thus, our study provides a framework to recognize bone marrow vascular niches in age-associated increases in metastasis and to target angiocrine signals in therapeutic strategies to manage bone metastasis.


Subject(s)
Aging/pathology , Bone Marrow/pathology , Bone Neoplasms/therapy , Tumor Microenvironment/physiology , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Bone Marrow/blood supply , Bone Marrow/drug effects , Bone Marrow/radiation effects , Bone Neoplasms/blood supply , Bone Neoplasms/secondary , Cell Division/drug effects , Cell Division/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Drug Resistance, Neoplasm/physiology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/radiation effects , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/radiation effects , Mice , Pericytes/drug effects , Pericytes/pathology , Pericytes/radiation effects , Prazosin/administration & dosage , Radiation Tolerance/physiology , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Whole-Body Irradiation , Xenograft Model Antitumor Assays
8.
Nat Cell Biol ; 21(4): 430-441, 2019 04.
Article in English | MEDLINE | ID: mdl-30936475

ABSTRACT

Growth plate cartilage contributes to the generation of a large variety of shapes and sizes of skeletal elements in the mammalian system. The removal of cartilage and how this process regulates bone shape are not well understood. Here we identify a non-bone-resorbing osteoclast subtype termed vessel-associated osteoclast (VAO). Endothelial cells at the bone/cartilage interface support VAOs through a RANKL-RANK signalling mechanism. In contrast to classical bone-associated osteoclasts, VAOs are dispensable for cartilage resorption and regulate anastomoses of type H vessels. Remarkably, proteinases including matrix metalloproteinase-9 (Mmp9) released from endothelial cells, not osteoclasts, are essential for resorbing cartilage to lead directional bone growth. Importantly, disrupting the orientation of angiogenic blood vessels by misdirecting them results in contorted bone shape. This study identifies proteolytic functions of endothelial cells in cartilage and provides a framework to explore tissue-lytic features of blood vessels in fracture healing, arthritis and cancer.


Subject(s)
Cartilage/enzymology , Endothelium/enzymology , Osteoclasts/physiology , Osteogenesis , Peptide Hydrolases/metabolism , Animals , Bone Resorption , Bone and Bones/blood supply , Bone and Bones/cytology , Cartilage/metabolism , Endothelium/metabolism , Growth Plate/anatomy & histology , Mice, Inbred C57BL , Osteoclasts/classification , Osteoclasts/metabolism
9.
Cell Stem Cell ; 22(1): 64-77.e6, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29276143

ABSTRACT

Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Stem Cell Niche , Animals , Bone Marrow/blood supply , Bone Marrow/pathology , Cell Count , Hematopoiesis , Humans , Intravital Microscopy , Mice, Inbred C57BL , Spleen/pathology , Stromal Cells/pathology , Time Factors , Tumor Microenvironment
10.
Stem Cells Int ; 2017: 5046953, 2017.
Article in English | MEDLINE | ID: mdl-29104595

ABSTRACT

Bone provides nurturing microenvironments for an array of cell types that coordinate important physiological functions of the skeleton, such as energy metabolism, mineral homeostasis, osteogenesis, and haematopoiesis. Endothelial cells form an intricate network of blood vessels that organises and sustains various microenvironments in bone. The recent identification of heterogeneity in the bone vasculature supports the existence of multiple vascular niches within the bone marrow compartment. A unique combination of cells and factors defining a particular microenvironment, supply regulatory signals to mediate a specific function. This review discusses recent developments in our understanding of vascular niches in bone that play a critical role in regulating the behaviour of multipotent haematopoietic and mesenchymal stem cells during development and homeostasis.

12.
Cell Rep ; 18(7): 1804-1816, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28199850

ABSTRACT

Measurements of flow velocities at the level of individual arterial vessels and sinusoidal capillaries are crucial for understanding the dynamics of hematopoietic stem and progenitor cell homing in the bone marrow vasculature. We have developed two complementary intravital two-photon imaging approaches to determine blood flow dynamics and velocities in multiple vessel segments by capturing the motion of red blood cells. High-resolution spatiotemporal measurements through a cranial window to determine short-time dynamics of flowing blood cells and repetitive centerline scans were used to obtain a detailed flow-profile map with hemodynamic parameters. In addition, we observed the homing of individual hematopoietic stem and progenitor cells and obtained detailed information on their homing behavior. With our imaging setup, we determined flow patterns at cellular resolution, blood flow velocities and wall shear stress in small arterial vessels and highly branched sinusoidal capillaries, and the cellular dynamics of hematopoietic stem and progenitor cell homing.


Subject(s)
Blood Flow Velocity/physiology , Bone Marrow Cells/physiology , Bone Marrow/physiology , Hematopoietic Stem Cells/physiology , Microvessels/physiology , Animals , Cell Movement/physiology , Hemodynamics/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Shear Strength/physiology , Stress, Physiological/physiology
13.
Bonekey Rep ; 5: 851, 2016.
Article in English | MEDLINE | ID: mdl-28018584

ABSTRACT

Confocal and two-photon microscopy has been widely used in bone research to not only produce high quality, three-dimensional images but also to provide valuable structural and quantitative information. In this article, we describe step-by-step protocols for confocal and two-photon microscopy to investigate earlier cellular events during colonisation of cancer cells in bone using xenograft mouse models. This includes confocal/two-photon microscopy imaging of paraformaldehyde fixed thick bone sections and frozen bone samples.

14.
Nat Commun ; 7: 13601, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922003

ABSTRACT

While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system.


Subject(s)
Bone and Bones/blood supply , Osteogenesis , Regional Blood Flow/physiology , Alendronate/pharmacology , Animals , Blood Vessels/growth & development , Bone and Bones/drug effects , Bone and Bones/physiology , Diphosphonates/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Male , Mice, Inbred C57BL , Models, Biological , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Receptors, Notch/metabolism , Regional Blood Flow/drug effects , Signal Transduction/drug effects
16.
Nat Commun ; 7: 12597, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27576369

ABSTRACT

A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Monocytes/physiology , Receptor, Notch2/metabolism , Signal Transduction/physiology , Adoptive Transfer , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , Calcium-Binding Proteins , Cell Differentiation , Cells, Cultured , Endothelial Cells/metabolism , GPI-Linked Proteins/metabolism , Healthy Volunteers , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Knockout , Receptors, IgG/metabolism , Recombinant Proteins/metabolism , Spleen/cytology
17.
Annu Rev Cell Dev Biol ; 32: 649-675, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27576121

ABSTRACT

In addition to their conventional role as a versatile transport system, blood vessels provide signals controlling organ development, regeneration, and stem cell behavior. In the skeletal system, certain capillaries support perivascular osteoprogenitor cells and thereby control bone formation. Blood vessels are also a critical component of niche microenvironments for hematopoietic stem cells. Here we discuss key pathways and factors controlling endothelial cell behavior in bone, the role of vessels in osteogenesis, and the nature of vascular stem cell niches in bone marrow.


Subject(s)
Blood Vessels/metabolism , Hematopoiesis , Osteogenesis , Signal Transduction , Animals , Bone Marrow/blood supply , Endothelial Cells/metabolism , Humans
19.
Nature ; 532(7599): 380-4, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27074508

ABSTRACT

Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-ß (PDGFRß)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRß-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.


Subject(s)
Aging/physiology , Arterioles/physiology , Bone and Bones/blood supply , Capillaries/physiology , Hematopoietic Stem Cells/cytology , Stem Cell Niche , Animals , Arterioles/cytology , Bone and Bones/cytology , Bone and Bones/metabolism , Capillaries/cytology , Cell Count , Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1/metabolism , Male , Mice , Osteogenesis , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptors, Notch/metabolism , Signal Transduction , Stem Cell Factor/metabolism
20.
Nature ; 532(7599): 323-8, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27074509

ABSTRACT

Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.


Subject(s)
Blood Vessels/cytology , Blood Vessels/physiology , Bone Marrow/blood supply , Hematopoiesis , Animals , Antigens, Ly/metabolism , Arteries/cytology , Arteries/physiology , Bone Marrow Cells/cytology , Cell Differentiation , Cell Movement , Cell Self Renewal , Cell Survival , Chemokine CXCL12/metabolism , Endothelial Cells/physiology , Female , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Leukocytes/cytology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nestin/metabolism , Pericytes/physiology , Permeability , Plasma/metabolism , Reactive Oxygen Species/metabolism , Receptors, CXCR4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...