Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
J Neurooncol ; 167(3): 447-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38443693

ABSTRACT

PURPOSE: The use of trametinib in the treatment of pediatric low-grade gliomas (PLGG) and plexiform neurofibroma (PN) is being investigated in an ongoing multicenter phase II trial (NCT03363217). Preliminary data shows potential benefits with significant response in the majority of PLGG and PN and an overall good tolerance. Moreover, possible benefits of MEK inhibitor therapy on cognitive functioning in neurofibromatosis type 1 (NF1) were recently shown which supports the need for further evaluation. METHODS: Thirty-six patients with NF1 (age range 3-19 years) enrolled in the phase II study of trametinib underwent a neurocognitive assessment at inclusion and at completion of the 72-week treatment. Age-appropriate Wechsler Intelligence Scales and the Trail Making Test (for children over 8 years old) were administered at each assessment. Paired t-tests and Reliable Change Index (RCI) analyses were performed to investigate change in neurocognitive outcomes. Regression analyses were used to investigate the contribution of age and baseline score in the prediction of change. RESULTS: Stable performance on neurocognitive tests was revealed at a group-level using paired t-tests. Clinically significant improvements were however found on specific indexes of the Wechsler intelligence scales and Trail Making Test, using RCI analyses. No significant impact of age on cognitive change was evidenced. However, lower initial cognitive performance was associated with increased odds of presenting clinically significant improvements on neurocognitive outcomes. CONCLUSION: These preliminary results show a potential positive effect of trametinib on cognition in patients with NF1. We observed significant improvements in processing speed, visuo-motor and verbal abilities. This study demonstrates the importance of including neuropsychological evaluations into clinical trial when using MEK inhibitors for patients with NF1.


Subject(s)
Neurofibromatosis 1 , Neuropsychological Tests , Pyridones , Pyrimidinones , Humans , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/administration & dosage , Male , Female , Adolescent , Child , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/complications , Neurofibromatosis 1/psychology , Young Adult , Child, Preschool , Glioma/drug therapy , Glioma/psychology , Glioma/complications , Brain Neoplasms/drug therapy , Brain Neoplasms/psychology , Brain Neoplasms/complications , Adult , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/adverse effects
2.
EClinicalMedicine ; 69: 102469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374970

ABSTRACT

Background: Medulloblastoma patients with a sub-total surgical resection (STR; >1.5 cm2 primary tumour residuum post-surgery) typically receive intensified treatment. However, the association of STR with poor outcomes has not been observed consistently, questioning the validity of STR as a high-risk disease feature. Methods: We collected extent of resection (EOR) data from 1110 patients (from UK CCLG centres (n = 416, collected between September 1990 and July 2014) and published (n = 694) cohorts), the largest cohort of molecularly and clinically annotated tumours assembled to specifically assess the significance of EOR. We performed association and univariable/multivariable survival analyses, assessing overall survival (OS) cohort-wide and with reference to the four consensus medulloblastoma molecular groups and clinical features. Findings: STR was reported in 20% (226/1110) of patients. Non-WNT (p = 0.047), children <5 years at diagnosis (p = 0.021) and metastatic patients (p < 0.0001) were significantly more likely to have a STR. In cohort-wide analysis, STR was associated with worse survival in univariable analysis (p < 0.0001). Examination of specific disease contexts showed that STR was prognostic in univariate analysis for patients receiving cranio-spinal irradiation (CSI) and chemotherapy (p = 0.016) and for patients with Group 3 tumours receiving CSI (p = 0.039). STR was not independently prognostic in multivariable analyses; outcomes for patients who have STR as their only risk-feature are as per standard-risk disease. Specifically, STR was not prognostic in non-metastatic patients that received upfront CSI. Interpretation: In a cohort of 1100 molecularly characterised medulloblastoma patients, STR (n = 226) predicted significantly lower OS in univariable analysis, but was not an independent prognostic factor. Our data suggest that maximal safe resection can continue to be carried out for patients with medulloblastoma and suggest STR should not inform patient management when observed as a sole, isolated risk-feature. Funding: Cancer Research UK, Newcastle Hospitals Charity, Children's Cancer North, British Division of the International Academy of Pathology.

3.
Radiology ; 310(2): e230777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349246

ABSTRACT

Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Glioma , Medulloblastoma , Female , Male , Humans , Adolescent , Young Adult , Child , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , World Health Organization
4.
J Neurosurg Pediatr ; 33(4): 367-373, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38241689

ABSTRACT

OBJECTIVE: Extent of resection (EOR) is the most important modifiable prognostic variable for pediatric patients with posterior fossa ependymoma. An understanding of primary and recurrent ependymoma complications is essential to inform clinical decision-making for providers, patients, and families. In this study, the authors characterize postsurgical complications following resection of primary and recurrent pediatric posterior fossa ependymoma in a molecularly defined cohort. METHODS: The authors conducted a 20-year retrospective single-center review of pediatric patients undergoing resection of posterior fossa ependymoma at the Hospital for Sick Children in Toronto, Canada. Complications were dichotomized into major and minor groups; EOR was compared across complication categories. The association between complication occurrence with length of stay (LOS) and mortality was also assessed using multivariable regressions. RESULTS: There were 60 patients with primary resection included, 41 (68%) of whom were alive at the time of data collection. Gross-total resection was achieved in 33 (58%) of 57 patients at primary resection. There were no 30-day mortality events following primary and recurrent ependymoma resection. Following primary resection, 6 patients (10%) had posterior fossa syndrome (PFS) and 36 (60%) developed cranial neuropathies, 56% of which recovered within 1 year. One patient (1.7%) required a tracheostomy and 9 patients (15%) required gastrostomy tubes. There were 14 ventriculoperitoneal shunts (23%) inserted for postoperative hydrocephalus. Among recurrent cases, there were 48 recurrent resections performed in 24 patients. Complications included new cranial neuropathy in 10 patients (21%), of which 5 neuropathies resolved within 1 year. There were no cases of PFS following resection of recurrent ependymoma. Gastrostomy tube insertion was required in 3 patients (6.3%), and 1 patient (2.0%) required a tracheostomy. Given the differences in the location of tumor recurrence, a direct comparison between primary and recurrent resection complications was not feasible. Following multivariate analysis adjusting for sex, age, molecular status, and EOR, occurrence of major complications was found to be associated with prolonged LOS but not mortality. CONCLUSIONS: These results detail the spectrum of postsurgical morbidity following primary and recurrent posterior fossa ependymoma resection. The crude complication rate following resection of infratentorial recurrent ependymoma was lower than that of primary ependymoma, although a statistical comparison revealed no significant differences between the groups. These results should serve to inform providers of the morbidity profile following surgical management of posterior fossa ependymoma and inform perioperative counseling of patients and their families.


Subject(s)
Brain Neoplasms , Ependymoma , Hydrocephalus , Infratentorial Neoplasms , Child , Humans , Infratentorial Neoplasms/surgery , Infratentorial Neoplasms/complications , Retrospective Studies , Brain Neoplasms/complications , Hydrocephalus/surgery , Ependymoma/surgery , Postoperative Complications/etiology , Postoperative Complications/surgery
5.
Anal Chem ; 96(3): 1019-1028, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38190738

ABSTRACT

Picosecond infrared laser mass spectrometry (PIRL-MS) is shown, through a retrospective patient tissue study, to differentiate medulloblastoma cancers from pilocytic astrocytoma and two molecular subtypes of ependymoma (PF-EPN-A, ST-EPN-RELA) using laser-extracted lipids profiled with PIRL-MS in 10 s of sampling and analysis time. The average sensitivity and specificity values for this classification, taking genomic profiling data as standard, were 96.41 and 99.54%, and this classification used many molecular features resolvable in 10 s PIRL-MS spectra. Data analysis and liquid chromatography coupled with tandem high-resolution mass spectrometry (LC-MS/MS) further allowed us to reduce the molecular feature list to only 18 metabolic lipid markers most strongly involved in this classification. The identified 'metabolite array' was comprised of a variety of phosphatidic and fatty acids, ceramides, and phosphatidylcholine/ethanolamine and could mediate the above-mentioned classification with average sensitivity and specificity values of 94.39 and 98.78%, respectively, at a 95% confidence in prediction probability threshold. Therefore, a rapid and accurate pathology classification of select pediatric brain cancer types from 10 s PIRL-MS analysis using known metabolic biomarkers can now be available to the neurosurgeon. Based on retrospective mining of 'survival' versus 'extent-of-resection' data, we further identified pediatric cancer types that may benefit from actionable 10 s PIRL-MS pathology feedback. In such cases, aggressiveness of the surgical resection can be optimized in a manner that is expected to benefit the patient's overall or progression-free survival. PIRL-MS is a promising tool to drive such personalized decision-making in the operating theater.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Humans , Child , Chromatography, Liquid , Lipidomics , Retrospective Studies , Infrared Rays , Tandem Mass Spectrometry , Lasers , Brain Neoplasms/diagnosis
6.
Neuro Oncol ; 26(2): 348-361, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715730

ABSTRACT

BACKGROUND: Recurrent brain tumors are the leading cause of cancer death in children. Indoleamine 2,3-dioxygenase (IDO) is a targetable metabolic checkpoint that, in preclinical models, inhibits anti-tumor immunity following chemotherapy. METHODS: We conducted a phase I trial (NCT02502708) of the oral IDO-pathway inhibitor indoximod in children with recurrent brain tumors or newly diagnosed diffuse intrinsic pontine glioma (DIPG). Separate dose-finding arms were performed for indoximod in combination with oral temozolomide (200 mg/m2/day x 5 days in 28-day cycles), or with palliative conformal radiation. Blood samples were collected at baseline and monthly for single-cell RNA-sequencing with paired single-cell T cell receptor sequencing. RESULTS: Eighty-one patients were treated with indoximod-based combination therapy. Median follow-up was 52 months (range 39-77 months). Maximum tolerated dose was not reached, and the pediatric dose of indoximod was determined as 19.2 mg/kg/dose, twice daily. Median overall survival was 13.3 months (n = 68, range 0.2-62.7) for all patients with recurrent disease and 14.4 months (n = 13, range 4.7-29.7) for DIPG. The subset of n = 26 patients who showed evidence of objective response (even a partial or mixed response) had over 3-fold longer median OS (25.2 months, range 5.4-61.9, p = 0.006) compared to n = 37 nonresponders (7.3 months, range 0.2-62.7). Four patients remain free of active disease longer than 36 months. Single-cell sequencing confirmed emergence of new circulating CD8 T cell clonotypes with late effector phenotype. CONCLUSIONS: Indoximod was well tolerated and could be safely combined with chemotherapy and radiation. Encouraging preliminary evidence of efficacy supports advancing to Phase II/III trials for pediatric brain tumors.


Subject(s)
Brain Neoplasms , Brain Stem Neoplasms , Humans , Child , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Temozolomide , Tryptophan , Immunologic Factors , Immunotherapy , Brain Stem Neoplasms/pathology
7.
Int J Radiat Oncol Biol Phys ; 119(1): 200-207, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38040059

ABSTRACT

PURPOSE: Emerging evidence suggests proton radiation therapy may offer cognitive sparing advantages over photon radiation therapy, yet dosimetry has not been compared previously. The purpose of this study was to examine dosimetric correlates of cognitive outcomes in children with medulloblastoma treated with proton versus photon radiation therapy. METHODS AND MATERIALS: In this retrospective, bi-institutional study, dosimetric and cognitive data from 75 patients (39 photon and 36 proton) were analyzed. Doses to brain structures were compared between treatment modalities. Linear mixed-effects models were used to create models of global IQ and cognitive domain scores. RESULTS: The mean dose and dose to 40% of the brain (D40) were 2.7 and 4.1 Gy less among proton-treated patients compared with photon-treated patients (P = .03 and .007, respectively). Mean doses to the left and right hippocampi were 11.2 Gy lower among proton-treated patients (P < .001 for both). Mean doses to the left and right temporal lobes were 6.9 and 7.1 Gy lower with proton treatment, respectively (P < .001 for both). Models of cognition found statistically significant associations between higher mean brain dose and reduced verbal comprehension, increased right temporal lobe D40 with reduced perceptual reasoning, and greater left temporal mean dose with reduced working memory. Higher brain D40 was associated with reduced processing speed and global IQ scores. CONCLUSIONS: Proton therapy reduces doses to normal brain structures compared with photon treatment. This leads to reduced cognitive decline after radiation therapy across multiple intellectual endpoints. Proton therapy should be offered to children receiving radiation for medulloblastoma.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Proton Therapy , Child , Humans , Medulloblastoma/radiotherapy , Proton Therapy/adverse effects , Protons , Retrospective Studies , Drug Tapering , Brain/radiation effects , Cognition/radiation effects , Cerebellar Neoplasms/radiotherapy , Radiotherapy Dosage
8.
Cancer Discov ; 14(2): 258-273, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37823831

ABSTRACT

Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioma , Humans , CTLA-4 Antigen , Glioma/drug therapy , Glioma/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Immunotherapy , Tumor Microenvironment
9.
Neuro Oncol ; 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38079480

ABSTRACT

BACKGROUND: Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumour surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS: In this study, we analyzed post-operative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and paediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n=427). RESULTS: Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the paediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviours. CONCLUSIONS: Our findings indicate that CMS-associated lesions result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.

10.
Cell Death Discov ; 9(1): 347, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726268

ABSTRACT

Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity.

11.
Neurooncol Adv ; 5(1): vdad057, 2023.
Article in English | MEDLINE | ID: mdl-37287693

ABSTRACT

Background: ZFTA-RELA (formerly known as c11orf-RELA) fused supratentorial ependymoma (ZFTAfus ST-EPN) has been recognized as a novel entity in the 2016 WHO classification of CNS tumors and further defined in the recent 2021 edition. ZFTAfus ST-EPN was reported to portend poorer prognosis when compared to its counterpart, YAP1 ST-EPN in some previously published series. The aim of this study was to determine the treatment outcome of molecularly confirmed and conventionally treated ZFTAfus ST-EPN patients treated in multiple institutions. Methods: We conducted a retrospective analysis of all pediatric patients with molecularly confirmed ZFTAfus ST-EPN patients treated in multiple institutions in 5 different countries (Australia, Canada, Germany, Switzerland, and Czechia). Survival outcomes were analyzed and correlated with clinical characteristics and treatment approaches. Results: A total of 108 patients were collated from multiple institutions in 5 different countries across three continents. We found across the entire cohort that the 5- and 10-year PFS were 65% and 63%, respectively. The 5- and 10-year OS of this cohort of patients were 87% and 73%. The rates of gross total resection (GTR) were high with 84 out of 108 (77.8%) patients achieving GTR. The vast majority of patients also received post-operative radiotherapy, 98 out of 108 (90.7%). Chemotherapy did not appear to provide any survival benefit in our patient cohort. Conclusion: This is the largest study to date of contemporaneously treated molecularly confirmed ZFTAfus ST-EPN patients which identified markedly improved survival outcomes compared to previously published series. This study also re-emphasizes the importance of maximal surgical resection in achieving optimal outcomes in pediatric patients with supratentorial ependymoma.

12.
Neuro Oncol ; 25(12): 2273-2286, 2023 12 08.
Article in English | MEDLINE | ID: mdl-37379234

ABSTRACT

BACKGROUND: The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS: In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS: The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received postoperative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS: LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients.


Subject(s)
Cerebellar Neoplasms , Li-Fraumeni Syndrome , Medulloblastoma , Child , Humans , Li-Fraumeni Syndrome/complications , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/therapy , Medulloblastoma/therapy , Medulloblastoma/drug therapy , Retrospective Studies , Prospective Studies , Cerebellar Neoplasms/therapy , Cerebellar Neoplasms/drug therapy , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics
14.
Nat Med ; 29(3): 656-666, 2023 03.
Article in English | MEDLINE | ID: mdl-36932241

ABSTRACT

The causes of pediatric cancers' distinctiveness compared to adult-onset tumors of the same type are not completely clear and not fully explained by their genomes. In this study, we used an optimized multilevel RNA clustering approach to derive molecular definitions for most childhood cancers. Applying this method to 13,313 transcriptomes, we constructed a pediatric cancer atlas to explore age-associated changes. Tumor entities were sometimes unexpectedly grouped due to common lineages, drivers or stemness profiles. Some established entities were divided into subgroups that predicted outcome better than current diagnostic approaches. These definitions account for inter-tumoral and intra-tumoral heterogeneity and have the potential of enabling reproducible, quantifiable diagnostics. As a whole, childhood tumors had more transcriptional diversity than adult tumors, maintaining greater expression flexibility. To apply these insights, we designed an ensemble convolutional neural network classifier. We show that this tool was able to match or clarify the diagnosis for 85% of childhood tumors in a prospective cohort. If further validated, this framework could be extended to derive molecular definitions for all cancer types.


Subject(s)
Neoplasms , Adult , Humans , Child , Neoplasms/diagnosis , Neoplasms/genetics , Transcriptome/genetics , Prospective Studies , Gene Expression Profiling/methods , Neural Networks, Computer
15.
J Neurooncol ; 161(3): 573-582, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36757527

ABSTRACT

PURPOSE: The overall survival and prognostic factors for children with multiply recurrent posterior fossa ependymoma are not well understood. We aimed to assess prognostic factors associated with survival for relapsed pediatric posterior fossa ependymoma. METHODS: An institutional database was queried for children with a primary diagnosis of posterior fossa ependymoma from 2000 to 2019. Kaplan-Meier survival analysis and Cox-proportional hazard regression were used to assess the relationship between treatment factors and overall survival. RESULTS: There were 60 patients identified; molecular subtype was available for 56, of which 49 (87.5%) were PF-A and 7 (12.5%) were PF-B. Relapse occurred in 29 patients (48%) at a mean time of 24 months following primary resection. Median 50% survival was 12.3 years for all patients and 3.3 years following diagnosis of first relapsed disease. GTR was associated with significantly improved survival following primary resection (HR 0.373, 95% CI 0.14-0.96). Presence of recurrent disease was significantly associated with worse survival (p < 0.0001). At recurrent disease diagnosis, disseminated disease was a negative prognostic factor (HR 11.0 95% CI 2.7-44) while GTR at first relapse was associated with improved survival HR 0.215 (95% CI: 0.048-0.96, p = 0.044). Beyond first relapse, the impact of GTR was not significant on survival, though surgery compared to no surgery was favorable with HR 0.155 (95% CI: 0.04-0.59). CONCLUSIONS: Disseminated disease at recurrence and extent of resection for first relapsed disease were important prognostic factors. Surgery compared to no surgery was associated with improved survival for the multiply recurrent ependymoma cohort.


Subject(s)
Brain Neoplasms , Ependymoma , Child , Humans , Neoplasm Recurrence, Local , Kaplan-Meier Estimate , Ependymoma/surgery , Ependymoma/diagnosis , Prognosis
16.
J Clin Oncol ; 41(13): 2372-2381, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36696605

ABSTRACT

PURPOSE: Survivors of childhood medulloblastoma suffer from substantial late effects. We characterized these sequelae using real-world health services data in a population-based cohort of medulloblastoma survivors. METHODS: All 5-year medulloblastoma survivors diagnosed age < 18 years between 1987 and 2015 in Ontario, Canada, were identified and matched 1:5 with population controls. Index date was 5 years from latest pediatric cancer event. Linkage to provincial administrative health data allowed for comparison of cumulative incidences of several adverse outcomes. RESULTS: Two hundred thirty survivors, 81.3% of whom had received craniospinal irradiation, were matched with 1,150 controls. The 10-year postindex cumulative incidence of all-cause mortality was 7.9% (95% CI, 3.9 to 11.8) in survivors versus 0.6% (95% CI, 0.1 to 1.1) in controls (hazard ratio [HR], 21.5; 95% CI, 9.8 to 54.0). The cumulative incidence of stroke was higher in survivors (4.8%; 95% CI, 2.2 to 9.0) compared with controls (0.1; 95% CI, 0.01 to 0.7; HR, 45.6; 95% CI, 12.8 to 289.8). Hearing loss requiring an amplification device was present in 24.9% (95% CI, 18.8 to 31.4) of survivors versus 0.3% (95% CI, 0.1 to 1.0) of controls (HR, 96.3; 95% CI, 39.7 to 317.3). Disability support prescription claims were submitted by 44.5% (95% CI, 37.1 to 51.6) of survivors versus 5.5% (95% CI, 4.2 to 7.1) of controls (HR, 10.0; 95% CI, 7.3 to 13.6). Female survivors were significantly less likely to deliver a liveborn child compared with controls (HR, 0.2; 95% CI, 0.1 to 0.7). CONCLUSION: Survivors of medulloblastoma have significant long-term medical sequelae, increased all-cause mortality, and are frequently dependent on disability supports. Efforts to reduce the toxicity of current therapy, specifically incorporating molecularly informed risk stratification to spare low- and intermediate-risk survivors the toxicity of treatment, are urgently needed. These findings should prompt a re-evaluation of our current treatment approaches where research focused on late-effect interventions should be prioritized.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Female , Adolescent , Ontario , Cohort Studies , Survivors , Risk Factors , Retrospective Studies
17.
Int J Radiat Oncol Biol Phys ; 116(4): 878-888, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36706870

ABSTRACT

PURPOSE: Children treated for brain tumors are at an increased risk for cognitive impairments due to the effect of radiation therapy on developing white matter (WM). Although damage to long-range WM is well documented in pediatric brain tumor survivors, the effect of radiation therapy on short-range WM remains unelucidated. We sought to clarify whether radiation treatment affects short-range WM by completing a virtual dissection of these connections and comparing their microstructural properties between brain tumor survivors and typically developing children. METHODS AND MATERIALS: T1-weighted and diffusion-weighted magnetic resonance images were acquired for 26 brain tumor survivors and 26 typically developing children. Short-range WM was delineated using a novel, whole-brain approach. A random forest classifier was used to identify short-range connections with the largest differences in microstructure between patients and typically developing children. RESULTS: The random forest classifier identified differences in short-range WM microstructure across the brain with an accuracy of 87.5%. Nine connections showed the largest differences in short-range WM between patients and typically developing children. For these connections, fractional anisotropy and axial diffusivity were significantly lower in patients. Short-range connections in the posterior fossa were disproportionately affected, suggesting that greater radiation exposure to the posterior fossa was more injurious to short-range WM. Lower craniospinal radiation dose did not predict reduced toxicity to short-range WM. CONCLUSIONS: Our findings indicate that treatment for medulloblastoma resulted in changes in short-range WM in patients. Lower fractional anisotropy and axial diffusivity may reflect altered microstructural organization and coherence of these connections, especially in the posterior fossa. Short-range WM may be especially sensitive to the effect of craniospinal radiation therapy, resulting in compromise to these connections regardless of dose.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , White Matter , Child , Humans , White Matter/radiation effects , Brain/diagnostic imaging , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Cerebellar Neoplasms/radiotherapy , Survivors , Anisotropy
18.
J Clin Oncol ; 41(10): 1921-1932, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36548930

ABSTRACT

PURPOSE: Infant and young childhood medulloblastoma (iMB) is usually treated without craniospinal irradiation (CSI) to avoid neurocognitive late effects. Unfortunately, many children relapse. The purpose of this study was to assess salvage strategies and prognostic features of patients with iMB who relapse after CSI-sparing therapy. METHODS: We assembled a large international cohort of 380 patients with relapsed iMB, age younger than 6 years, and initially treated without CSI. Univariable and multivariable Cox models of postrelapse survival (PRS) were conducted for those treated with curative intent using propensity score analyses to account for confounding factors. RESULTS: The 3-year PRS, for 294 patients treated with curative intent, was 52.4% (95% CI, 46.4 to 58.3) with a median time to relapse from diagnosis of 11 months. Molecular subgrouping was available for 150 patients treated with curative intent, and 3-year PRS for sonic hedgehog (SHH), group 4, and group 3 were 60%, 84%, and 18% (P = .0187), respectively. In multivariable analysis, localized relapse (P = .0073), SHH molecular subgroup (P = .0103), CSI use after relapse (P = .0161), and age ≥ 36 months at initial diagnosis (P = .0494) were associated with improved survival. Most patients (73%) received salvage CSI, and although salvage chemotherapy was not significant in multivariable analysis, its use might be beneficial for a subset of children receiving salvage CSI < 35 Gy (P = .007). CONCLUSION: A substantial proportion of patients with relapsed iMB are salvaged after initial CSI-sparing approaches. Patients with SHH subgroup, localized relapse, older age at initial diagnosis, and those receiving salvage CSI show improved PRS. Future prospective studies should investigate optimal CSI doses and the role of salvage chemotherapy in this population.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Craniospinal Irradiation , Medulloblastoma , Child , Humans , Infant , Child, Preschool , Medulloblastoma/radiotherapy , Cohort Studies , Prospective Studies , Craniospinal Irradiation/adverse effects , Hedgehog Proteins , Neoplasm Recurrence, Local , Brain Neoplasms/therapy , Chronic Disease , Cerebellar Neoplasms/radiotherapy
19.
Nat Cancer ; 4(2): 203-221, 2023 02.
Article in English | MEDLINE | ID: mdl-36585449

ABSTRACT

We conducted integrative somatic-germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.


Subject(s)
Neoplasms , Young Adult , Adolescent , Humans , Child , Neoplasms/drug therapy , Neoplasms/genetics , Mutation , Genomics , Transcriptome/genetics , Homologous Recombination
20.
Neuron ; 111(1): 30-48.e14, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36323321

ABSTRACT

Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of ß-catenin. Piezo2 knockout reverses WNT/ß-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.


Subject(s)
Brain Neoplasms , beta Catenin , Mice , Animals , beta Catenin/metabolism , beta Catenin/therapeutic use , Endothelial Cells/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain/metabolism , Ion Channels/metabolism , Blood-Brain Barrier/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...