Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 181: 874-882, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27397841

ABSTRACT

Agricultural point source pesticide pollution arising from contaminated machinery washings and accidental spillages pose a significant threat to river water and groundwater quality. In this study, we assess the effectiveness of a three-stage on-farm biobed for treating pesticide contaminated wastewater from a large (20 km(2)) commercial arable estate. The facility consisted of an enclosed machinery wash-down unit (stage 1), a 49 m(2) lined compost-straw-topsoil biobed (stage 2), and a 200 m(2) drainage field with a trickle irrigation system (stage 3). Pesticide concentrations were analysed in water samples collected fortnightly between November 2013 and November 2015 from the biobed input and output sumps and from 20 porous pots buried at 45 cm and 90 cm depth within the drainage field. The results revealed that the biobed removed 68-98% of individual pesticides within the contaminated washings, with mean total pesticide concentrations reducing by 91.6% between the biobed input and output sumps. Drainage field irrigation removed a further 68-99% of individual pesticides, with total mean pesticide concentrations reducing by 98.4% and 97.2% in the 45 cm and 90 cm depth porous pots, respectively. The average total pesticide concentration at 45 cm depth in the drainage field (57 µg L(-1)) was 760 times lower than the mean concentration recorded in the input sump (43,334 µg L(-1)). There was no evidence of seasonality in the efficiency of biobed pesticide removal, nor was there evidence of a decline in removal efficiency over the two-year monitoring period. However, higher mean total pesticide concentrations at 90 cm (102 µg L(-1)) relative to 45 cm (57 µg L(-1)) depth indicated an accumulation of pesticide residues deeper within the soil profile. Overall, the results presented here demonstrate that a three-stage biobed can successfully reduce pesticide pollution risk from contaminated machinery washings on a commercial farm.


Subject(s)
Farms , Pesticides , Waste Disposal, Fluid/methods , Water Pollutants, Chemical , Agricultural Irrigation/instrumentation , Agricultural Irrigation/methods , Agriculture/methods , Equipment Design , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Pesticides/analysis , Pesticides/isolation & purification , Soil , United Kingdom , Waste Disposal, Fluid/instrumentation , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 35(12): 3113-3123, 2016 12.
Article in English | MEDLINE | ID: mdl-27183059

ABSTRACT

A number of European countries run large-scale pesticide monitoring schemes in watersheds aimed at identifying and evaluating the presence of pesticide residues in the environment. These schemes provide national and regional scale assessments of pesticide concentrations within the context of environmental quality assessment, aiming to ensure some degree of ecological protection. The present study is aimed at evaluating the joint effects of the pesticide mixtures detected in monitoring programs, using a process-based mixture model that was parameterized for Daphnia magna. In total, over 15 000 samples containing over 1 million individual measurements were evaluated for effects. It was found that there are only a small number of places where one can expect to have effects on daphnids, based on measured concentrations. The most polluted samples would cause extinction of a daphnid population within only 30 h. The results show that effects are mostly triggered by a limited number of pesticide residues at locations with high emissions. It was also shown that the analytical detection limits are basically too high to exclude mixture effects. So, despite all the effort that is put into chemical monitoring programs, it remains a challenge to make statements on whether or not the environment is protected. Recommendations are offered for a different setup of monitoring programs to improve this situation. Environ Toxicol Chem 2016;35:3113-3123. © 2016 SETAC.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Program Evaluation , Animals , Azirines/analysis , Azirines/toxicity , Chlorfenvinphos/analysis , Chlorfenvinphos/toxicity , Daphnia/drug effects , Daphnia/physiology , Dihydropyridines/analysis , Dihydropyridines/toxicity , Europe , Lethal Dose 50 , Limit of Detection , Pesticide Residues/analysis , Pesticide Residues/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...