Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881051

ABSTRACT

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Subject(s)
Deep Learning , Dermoscopy , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/diagnostic imaging , Melanoma/diagnosis , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Dermoscopy/methods , Neural Networks, Computer , Reproducibility of Results , Genomics/methods , Female , Male , Middle Aged , Adult , Aged
2.
Food Chem ; 454: 139747, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38797095

ABSTRACT

The structure and function of dietary proteins, as well as their subcellular prediction, are critical for designing and developing new drug compositions and understanding the pathophysiology of certain diseases. As a remedy, we provide a subcellular localization method based on feature fusion and clustering for dietary proteins. Additionally, an enhanced PseAAC (Pseudo-amino acid composition) method is suggested, which builds upon the conventional PseAAC. The study initially builds a novel model of representing the food protein sequence by integrating autocorrelation, chi density, and improved PseAAC to better convey information about the food protein sequence. After that, the dimensionality of the fused feature vectors is reduced by using principal component analysis. With prediction accuracies of 99.24% in the Gram-positive dataset and 95.33% in the Gram-negative dataset, respectively, the experimental findings demonstrate the practicability and efficacy of the proposed approach. This paper is basically exploring pseudo-amino acid composition of not any clinical aspect but exploring a pharmaceutical aspect for drug repositioning.


Subject(s)
Dietary Proteins , Dietary Proteins/chemistry , Dietary Proteins/analysis , Dietary Proteins/metabolism , Amino Acids/chemistry , Amino Acids/analysis , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis
3.
Sci Rep ; 14(1): 1816, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245654

ABSTRACT

The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .

4.
Sensors (Basel) ; 23(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687941

ABSTRACT

Wireless sensor networks (WSNs) enable communication among sensor nodes and require efficient energy management for optimal operation under various conditions. Key challenges include maximizing network lifetime, coverage area, and effective data aggregation and planning. A longer network lifetime contributes to improved data transfer durability, sensor conservation, and scalability. In this paper, an enhanced dual-selection krill herd (KH) optimization clustering scheme for resource-efficient WSNs with minimal overhead is introduced. The proposed approach increases overall energy utilization and reduces inter-node communication, addressing energy conservation challenges in node deployment and clustering for WSNs as optimization problems. A dynamic layering mechanism is employed to prevent repetitive selection of the same cluster head nodes, ensuring effective dual selection. Our algorithm is designed to identify the optimal solution through enhanced exploitation and exploration processes, leveraging a modified krill-based clustering method. Comparative analysis with benchmark approaches demonstrates that the proposed model enhances network lifetime by 23.21%, increases stable energy by 19.84%, and reduces network latency by 22.88%, offering a more efficient and reliable solution for WSN energy management.

SELECTION OF CITATIONS
SEARCH DETAIL
...