Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3828, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714653

ABSTRACT

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

2.
Nat Mater ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622325

ABSTRACT

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

3.
Nat Commun ; 15(1): 2903, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575570

ABSTRACT

Bismuth ferrite (BiFeO3) is a multiferroic material that exhibits both ferroelectricity and canted antiferromagnetism at room temperature, making it a unique candidate in the development of electric-field controllable magnetic devices. The magnetic moments in BiFeO3 are arranged into a spin cycloid, resulting in unique magnetic properties which are tied to the ferroelectric order. Previous understanding of this coupling has relied on average, mesoscale measurements. Using nitrogen vacancy-based diamond magnetometry, we observe the magnetic spin cycloid structure of BiFeO3 in real space. This structure is magnetoelectrically coupled through symmetry to the ferroelectric polarization and this relationship is maintained through electric field switching. Through a combination of in-plane and out-of-plane electrical switching, coupled with ab initio studies, we have discovered that the epitaxy from the substrate imposes a magnetoelastic anisotropy on the spin cycloid, which establishes preferred cycloid propagation directions. The energy landscape of the cycloid is shaped by both the ferroelectric degree of freedom and strain-induced anisotropy, restricting the spin spiral propagation vector to changes to specific switching events.

4.
Nat Commun ; 15(1): 1902, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429273

ABSTRACT

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.

5.
Nano Lett ; 24(10): 2972-2979, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416567

ABSTRACT

The recent discovery of polar topological structures has opened the door for exciting physics and emergent properties. There is, however, little methodology to engineer stability and ordering in these systems, properties of interest for engineering emergent functionalities. Notably, when the surface area is extended to arbitrary thicknesses, the topological polar texture becomes unstable. Here we show that this instability of the phase is due to electrical coupling between successive layers. We demonstrate that this electrical coupling is indicative of an effective screening length in the dielectric, similar to the conductor-ferroelectric interface. Controlling the electrostatics of the superlattice interfaces, the system can be tuned between a pure topological vortex state and a mixed classical-topological phase. This coupling also enables engineering coherency among the vortices, not only tuning the bulk phase diagram but also enabling the emergence of a 3D lattice of polar textures.

6.
Nat Commun ; 15(1): 479, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212317

ABSTRACT

Bismuth ferrite has garnered considerable attention as a promising candidate for magnetoelectric spin-orbit coupled logic-in-memory. As model systems, epitaxial BiFeO3 thin films have typically been deposited at relatively high temperatures (650-800 °C), higher than allowed for direct integration with silicon-CMOS platforms. Here, we circumvent this problem by growing lanthanum-substituted BiFeO3 at 450 °C (which is reasonably compatible with silicon-CMOS integration) on epitaxial BaPb0.75Bi0.25O3 electrodes. Notwithstanding the large lattice mismatch between the La-BiFeO3, BaPb0.75Bi0.25O3, and SrTiO3 (001) substrates, all the layers in the heterostructures are well ordered with a [001] texture. Polarization mapping using atomic resolution STEM imaging and vector mapping established the short-range polarization ordering in the low temperature grown La-BiFeO3. Current-voltage, pulsed-switching, fatigue, and retention measurements follow the characteristic behavior of high-temperature grown La-BiFeO3, where SrRuO3 typically serves as the metallic electrode. These results provide a possible route for realizing epitaxial multiferroics on complex-oxide buffer layers at low temperatures and opens the door for potential silicon-CMOS integration.

7.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38016700

ABSTRACT

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

10.
Nat Commun ; 14(1): 4465, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491370

ABSTRACT

Chirality or handedness of a material can be used as an order parameter to uncover the emergent electronic properties for quantum information science. Conventionally, chirality is found in naturally occurring biomolecules and magnetic materials. Chirality can be engineered in a topological polar vortex ferroelectric/dielectric system via atomic-scale symmetry-breaking operations. We use four-dimensional scanning transmission electron microscopy (4D-STEM) to map out the topology-driven three-dimensional domain walls, where the handedness of two neighbor topological domains change or remain the same. The nature of the domain walls is governed by the interplay of the local perpendicular (lateral) and parallel (axial) polarization with respect to the tubular vortex structures. Unique symmetry-breaking operations and the finite nature of domain walls result in a triple point formation at the junction of chiral and achiral domain walls. The unconventional nature of the domain walls with triple point pairs may result in unique electrostatic and magnetic properties potentially useful for quantum sensing applications.

11.
Adv Mater ; 35(51): e2302012, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37433562

ABSTRACT

Complex-oxide superlattices provide a pathway to numerous emergent phenomena because of the juxtaposition of disparate properties and the strong interfacial interactions in these unit-cell-precise structures. This is particularly true in superlattices of ferroelectric and dielectric materials, wherein new forms of ferroelectricity, exotic dipolar textures, and distinctive domain structures can be produced. Here, relaxor-like behavior, typically associated with the chemical inhomogeneity and complexity of solid solutions, is observed in (BaTiO3 )n /(SrTiO3 )n (n = 4-20 unit cells) superlattices. Dielectric studies and subsequent Vogel-Fulcher analysis show significant frequency dispersion of the dielectric maximum across a range of periodicities, with enhanced dielectric constant and more robust relaxor behavior for smaller period n. Bond-valence molecular-dynamics simulations predict the relaxor-like behavior observed experimentally, and interpretations of the polar patterns via 2D discrete-wavelet transforms in shorter-period superlattices suggest that the relaxor behavior arises from shape variations of the dipolar configurations, in contrast to frozen antipolar stripe domains in longer-period superlattices (n = 16). Moreover, the size and shape of the dipolar configurations are tuned by superlattice periodicity, thus providing a definitive design strategy to use superlattice layering to create relaxor-like behavior which may expand the ability to control desired properties in these complex systems.

12.
Nano Lett ; 23(14): 6602-6609, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37449842

ABSTRACT

Nontrivial polarization textures have been demonstrated in ferroelectric/dielectric superlattices, where the electrostatic, elastic, and different gradient energies compete in a delicate balance. When PbTiO3/SrTiO3 superlattices are grown on DyScO3, the coexistence of ferroelectric domains and vortex structure is observed for n = 12-20 unit cells. Here, we report an approach to achieve single-phase vortex structures in superlattices by controlling the epitaxial strain using Sr1.04Al0.12Ga0.35Ta0.50O3 substrates. The domain width follows Kittel's law with the thickness of the ferroelectric PbTiO3 layers. A phase transition from vortex to a disordered phase with temperature is characterized by the correlation length. Resonant soft X-ray diffraction circular dichroism at the titanium L-edge reveals enhanced chirality with the thickness of the ferroelectric layer. These results are supported by second-principles simulations, which demonstrate that the integrated helicity increases with n. The stabilization of chiral single-phase polar vortices in ferroelectric/dielectric superlattices can enable novel optoelectronic devices with enhanced ferroelectric-light interaction.

13.
Nat Commun ; 14(1): 4363, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474521

ABSTRACT

Four-dimensional scanning transmission electron microscopy (4D-STEM) has recently gained widespread attention for its ability to image atomic electric fields with sub-Ångstrom spatial resolution. These electric field maps represent the integrated effect of the nucleus, core electrons and valence electrons, and separating their contributions is non-trivial. In this paper, we utilized simultaneously acquired 4D-STEM center of mass (CoM) images and annular dark field (ADF) images to determine the projected electron charge density in monolayer MoS2. We evaluate the contributions of both the core electrons and the valence electrons to the derived electron charge density; however, due to blurring by the probe shape, the valence electron contribution forms a nearly featureless background while most of the spatial modulation comes from the core electrons. Our findings highlight the importance of probe shape in interpreting charge densities derived from 4D-STEM and the need for smaller electron probes.

14.
Nat Commun ; 14(1): 3744, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353526

ABSTRACT

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the µm scale, showing control over this order-disorder transition on scales relevant for device applications.


Subject(s)
Engineering , Magnets , Temperature , Physical Phenomena , Magnetic Phenomena
15.
Ultramicroscopy ; 250: 113732, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37087909

ABSTRACT

Nanobeam electron diffraction can probe local structural properties of complex crystalline materials including phase, orientation, tilt, strain, and polarization. Ideally, each diffraction pattern from a projected area of a few unit cells would produce a clear Bragg diffraction pattern, where the reciprocal lattice vectors can be measured from the spacing of the diffracted spots, and the spot intensities are equal to the square of the structure factor amplitudes. However, many samples are too thick for this simple interpretation of their diffraction patterns, as multiple scattering of the electron beam can produce a highly nonlinear relationship between the spot intensities and the underlying structure. Here, we develop a stacked Bloch wave method to model the diffracted intensities from thick samples with structure that varies along the electron beam. Our method reduces the large parameter space of electron scattering to just a few structural variables per probe position, making it fast enough to apply to very large fields of view. We apply our method to SrTiO3/PbTiO3/SrTiO3 multilayer samples, and successfully disentangle specimen tilt from the mean polarization of the PbTiO3 layers. We elucidate the structure of complex vortex topologies in the PbTiO3 layers, demonstrating the promise of our method to extract material properties from thick samples.

16.
Adv Mater ; 35(23): e2208367, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36930962

ABSTRACT

Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor-based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric-ferroelectric-dielectric trilayers exhibit classical ferroelectric bi-stability together with the existence of low-field metastable polarization states. This behavior is directly tied to the in-plane vortex ordering, and it is shown that it can be used as a new method of non-destructive readout-out of the poled state.

17.
Nat Commun ; 14(1): 1355, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36907894

ABSTRACT

Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of -1) to a two-dimensional, tetratic lattice of merons (with topological charge of -1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8 membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

18.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739113

ABSTRACT

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

19.
Nat Mater ; 22(2): 207-215, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36536139

ABSTRACT

Competition between ground states at phase boundaries can lead to significant changes in properties under stimuli, particularly when these ground states have different crystal symmetries. A key challenge is to stabilize and control the coexistence of symmetry-distinct phases. Using BiFeO3 layers confined between layers of dielectric TbScO3 as a model system, we stabilize the mixed-phase coexistence of centrosymmetric and non-centrosymmetric BiFeO3 phases at room temperature with antipolar, insulating and polar semiconducting behaviour, respectively. Application of orthogonal in-plane electric (polar) fields results in reversible non-volatile interconversion between the two phases, hence removing and introducing centrosymmetry. Counterintuitively, we find that an electric field 'erases' polarization, resulting from the anisotropy in octahedral tilts introduced by the interweaving TbScO3 layers. Consequently, this interconversion between centrosymmetric and non-centrosymmetric phases generates changes in the non-linear optical response of over three orders of magnitude, resistivity of over five orders of magnitude and control of microscopic polar order. Our work establishes a platform for cross-functional devices that take advantage of changes in optical, electrical and ferroic responses, and demonstrates octahedral tilts as an important order parameter in materials interface design.

20.
Phys Rev Lett ; 129(24): 247601, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563236

ABSTRACT

An escalating challenge in condensed-matter research is the characterization of emergent order-parameter nanostructures such as ferroelectric and ferromagnetic skyrmions. Their small length scales coupled with complex, three-dimensional polarization or spin structures makes them demanding to trace out fully. Resonant elastic x-ray scattering (REXS) has emerged as a technique to study chirality in spin textures such as skyrmions and domain walls. It has, however, been used to a considerably lesser extent to study analogous features in ferroelectrics. Here, we present a framework for modeling REXS from an arbitrary arrangement of charge quadrupole moments, which can be applied to nanostructures in materials such as ferroelectrics. With this, we demonstrate how extended reciprocal space scans using REXS with circularly polarized x rays can probe the three-dimensional structure and chirality of polar skyrmions. Measurements, bolstered by quantitative scattering calculations, show that polar skyrmions of mixed chirality coexist, and that REXS allows valuation of relative fractions of right- and left-handed skyrmions. Our quantitative analysis of the structure and chirality of polar skyrmions highlights the capability of REXS for establishing complex topological structures toward future application exploits.

SELECTION OF CITATIONS
SEARCH DETAIL
...