Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Res Microbiol ; 174(5): 104061, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37055003

ABSTRACT

In this study a data dependent acquisition label-free based proteomics approach was used to identify pH-dependent proteins that respond in a growth phase independent manner in Campylobacter jejuni reference strain NCTC 11168. NCTC 11168 was grown within its pH physiological normal growth range (pH 5.8, 7.0 and 8.0, µ = âˆ¼0.5 h-1) and exposed to pH 4.0 shock for 2 h. It was discovered that gluconate 2-dehydrogenase GdhAB, NssR-regulated globins Cgb and Ctb, cupin domain protein Cj0761, cytochrome c protein CccC (Cj0037c), and phosphate-binding transporter protein PstB all show acidic pH dependent abundance increases but are not activated by sub-lethal acid shock. Glutamate synthase (GLtBD) and the MfrABC and NapAGL respiratory complexes were induced in cells grown at pH 8.0. The response to pH stress by C. jejuni is to bolster microaerobic respiration and at pH 8.0 this is assisted by accumulation of glutamate the conversion of which could bolster fumarate respiration. The pH dependent proteins linked to growth in C. jejuni NCTC 11168 aids cellular energy conservation maximising growth rate and thus competitiveness and fitness.


Subject(s)
Campylobacter jejuni , Campylobacter jejuni/genetics , Campylobacter jejuni/chemistry , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Proteomics , Hydrogen-Ion Concentration
2.
J Environ Sci Health B ; 57(1): 23-38, 2022.
Article in English | MEDLINE | ID: mdl-34994288

ABSTRACT

Ilex paraguariensis A. St. Hil. plants are used for the preparation of food and drinks which are widely consumed worldwide. During the harvest season of these plants, 2-5 ton hec-1 of agricultural residue is generated, which remains underutilized. Therefore, this study aimed to obtain an edible extract with high content of bioactive compounds and antimicrobial properties from the agricultural residue of I. paraguariensis for industrial use in food applications. The extraction conditions were optimized through a multivariate experimental design using ethanol:water. The extracted compounds were characterized by HPLC-ESY-QTOF-MS. In the optimal extraction conditions, 55 compounds were extracted, including 8 compounds that were not previously reported in I. paraguariensis. The method proved to be simple, fast, economical and environmentally friendly, with the use of green solvents. This optimization allowed for the extraction of 15.07 g of phenolic compounds per 100 g of residue. The extract showed high antioxidant activity and the capacity to inhibit Staphylococcus aureus. Results indicate that it is possible to obtain an edible extract with a high content of bioactive compounds, particularly phenolic compounds, from the I. paraguariensis residue, which has high prospects for the valorization of unexplored natural resources.


Subject(s)
Ilex paraguariensis , Antioxidants/analysis , Chromatography, High Pressure Liquid , Ilex paraguariensis/chemistry , Phenols/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry
3.
J Food Prot ; 85(4): 591-596, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34995347

ABSTRACT

ABSTRACT: The goals of this study were to evaluate the persistence and the virulence potential of Listeria monocytogenes isolated from beef carcasses obtained in processing facilities in the southern region of Rio Grande do Sul, Brazil, based on pulsed-field gel electrophoresis (PFGE), invasion ability in human colorectal carcinoma cells (HCT-116), internalin A (InlA) expression by Western blot, and identification of mutation points in inlA. PFGE profiles demonstrated that L. monocytogenes isolates were grouped based on their previously identified lineages and serogroups (lineage I: serogroup IIb, n = 2, and serogroup IVb, n = 5; lineage II: serogroup IIc, n = 5). Isolates with indistinguishable genetic profiles through this method were obtained from different slaughterhouses and sampling steps, with as much as a 3-year interval. Seven isolates showed high invasion ability (2.4 to 7.4%; lineage I, n = 6, and lineage II, n = 1) in HCT and expressed InlA. Five isolates showed low cell invasion ability (0.6 to 1.4%; lineage I, n = 1, and lineage II, n = 4) and did not express InlA, and two of them (lineage II, serogroup IIc) presented mutations in inlA that led to premature stop codon type 19 at position 326 (GAA → TAA). The results demonstrated that most L. monocytogenes isolates from lineage I expressed InlA and were the most invasive in HCT, indicating their high virulence potential, whereas most isolates from lineage II showed attenuated invasion because of nonexpression of InlA or the presence of premature stop codon type 19 in inlA. The obtained results demonstrated that L. monocytogenes with indistinguishable PFGE profiles can persist or be reintroduced in beef processing facilities in the studied region and that differences in their virulence potential are based on their lineages and serogroups.


Subject(s)
Listeria monocytogenes , Listeriosis , Animals , Bacterial Proteins/genetics , Brazil , Cattle , Food Microbiology , Genetic Profile , Humans , Listeria monocytogenes/genetics
4.
Microb Pathog ; 161(Pt A): 105265, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34699927

ABSTRACT

Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Foodborne Diseases , Gastrointestinal Tract , Humans , Virulence Factors
5.
Can J Microbiol ; 67(9): 677-685, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33945694

ABSTRACT

This study investigated the ability of Staphylococcus aureus isolates from milk to form biofilm, through detection of adhesion genes, investigating exopolysaccharide (EPS) production and biofilm formation on polystyrene (PS) and stainless steel (SS) surfaces, and by quantifying the expression of ebpS and cna genes under different temperatures and culture media. Among the 31 isolates, the adhesion genes ebpS and cna were found in 81% and 61% of the isolates, respectively. The screening tests for phenotype revealed that 58% of the isolates were EPS producers, and 45% showed the ability to produce biofilm on PS. Nine of the 31 isolates were selected to verify their ability to form biofilm on SS, of which 3 were non-biofilm producers, 3 were poor biofilm producers, and 3 were moderate biofilm producers. However, all nine isolates produced biofilm on SS, regardless of their phenotypic profile on PS. Reverse-transcriptase quantitative PCR (RT-qPCR) revealed no variation in the expression levels of ebpS and cna genes at different temperatures, except for isolate S24 at 10 °C, for both genes tested. Moreover, RT-qPCR assays revealed that the expression levels of the adhesion genes ebpS and cna are isolate- and temperature-dependent; however, they are independent of the phenotypic biofilm-formation profile.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Biofilms , Humans , Milk , Staphylococcus aureus/genetics , Temperature
6.
Can J Microbiol ; 67(4): 301-309, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33703923

ABSTRACT

The aims of this study were to evaluate the ability of Campylobacter jejuni isolated from a poultry slaughterhouse to form biofilm in the presence and absence of Pseudomonas aeruginosa, and the effect of surface (stainless steel, polystyrene), temperature (7, 25, and 42 °C), and oxygen concentration (microaerophilic and aerobic conditions) on the formation of biofilm. The genes ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, katA, kpsM, luxS, racR, and sodB, related to biofilm formation by C. jejuni, were also investigated. All isolates formed biofilm on stainless steel and on polystyrene, in both aerobic and microaerophilic atmospheres, including temperatures not optimal for C. jejuni growth (7 and 25 °C), and biofilm also was formed in the presence of P. aeruginosa. In dual-species biofilm on stainless steel, biofilm formation was 2-6 log CFU·cm-2 higher at 7 °C for all isolates, in comparison with monospecies biofilm. Ten genes (ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, luxS, racR, and sodB) were detected in all isolates, but katA and kpsM were found in four and six isolates, respectively. The results obtained are of concern because the poultry C. jejuni isolates form biofilm in different conditions, which is enhanced in the presence of other biofilm formers, such as P. aeruginosa.


Subject(s)
Biofilms/growth & development , Campylobacter jejuni/physiology , Poultry/microbiology , Pseudomonas aeruginosa/physiology , Abattoirs , Animals , Campylobacter jejuni/isolation & purification , Microbial Interactions , Oxygen/analysis , Surface Properties , Temperature
7.
Food Res Int ; 140: 109871, 2021 02.
Article in English | MEDLINE | ID: mdl-33648189

ABSTRACT

Sushi is a ready-to-eat (RTE) food prepared from raw or cooked fish that is widely consumed worldwide. Listeria monocytogenes is the foodborne pathogen most commonly associated with RTE and fish products. The aim of the present study was to evaluate the presence of L. monocytogenes in salmon sushi commercialized in Pelotas city, Brazil, and to evaluate the genetic diversity, biofilm-forming ability in stainless steel, and virulence characteristics of the isolates. Four sampling events were carried out in seven specialized sushi establishments totaling 28 sushi pools. Listeria monocytogenes was detected in six samples (21.4%) from two establishments (28.6%). All isolates belonged to serotype 4b and carried the prfA, plcA, plcB, hlyA, mpl, actA, inlA, inlC, inlJ, and iap genes. The inlB gene was not detected in two isolates. The PFGE analysis grouped the isolates into four pulsotypes. All isolates had the ability to form biofilm on stainless steel and the average of biofilm formation counts varied between 6.4 and 7.2 log CFU.cm-2. The isolates harbored the biofilm-related genes agrA, agrB, agrC, agrD, and prfA, with the exception of two isolates that did not harbor the agrD gene. The presence of L. monocytogenes in RTE sushi is a concern, demonstrating that sushi consumption may be a risk of human listeriosis. Furthermore, it was possible to identify the persistence of this pathogen for at least one month (pulsotypes III and IV), in two establishments (A and G), highlighting the need for improving the cleaning and sanitation procedures in establishments that commercialize RTE sushi.


Subject(s)
Listeria monocytogenes , Animals , Biofilms , Brazil , Food Microbiology , Genetic Variation , Humans , Listeria monocytogenes/genetics , Salmon , Virulence/genetics
8.
Braz J Microbiol ; 51(4): 2021-2032, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32514993

ABSTRACT

The aim of this study was to investigate the prevalence of thermophilic Campylobacter in the broiler production chain of southern Brazil, by evaluating broiler farms and slaughter line samples, and to determine the genetic diversity, antimicrobial resistance, and virulence genes of the isolates. Of the 140 samples investigated in this study, 75 (53.6%) were positive for thermophilic Campylobacter, and all isolates were identified by phenotypic and molecular tests as C. jejuni. The resistance to nalidixic acid was the most common (74%), followed by resistance to enrofloxacin (67.3%) and ciprofloxacin (37.1%). However, there was no resistance to the macrolides tested which are recommended for the treatment of human campylobacteriosis. The PFGE showed that the isolates were grouped in eight macrorestriction patterns (P1 to P8). A representative isolate of each macrorestriction pattern was investigated for the presence of virulence genes and all isolates carried the cadF, ciaB, cdtA, cdtB, cdtC, and flaA genes. The dnaJ gene was detected in 87.5% (7/8) of the isolates. The flhA and racR genes were detected in 75% (6/8), while the pldA gene was present in 62.5% (5/8) and the wlaN gene in 25% (2/8). The presence of C. jejuni in broiler farms and in the slaughterhouse is a hazard to consumer given that this pathogen can be maintained throughout the broiler production chain and contaminates the final product. Moreover, the presence of the major virulence genes in the isolates demonstrates that they have the ability to develop campylobacteriosis in humans.


Subject(s)
Campylobacter Infections/veterinary , Campylobacter/genetics , Chickens/microbiology , Drug Resistance, Bacterial/genetics , Genetic Variation , Virulence Factors/genetics , Abattoirs , Animals , Anti-Bacterial Agents/pharmacology , Brazil , Campylobacter/drug effects , Campylobacter Infections/microbiology , Genes, Bacterial , Phenotype , Prevalence
9.
J Food Prot ; 83(11): 1941-1946, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32574360

ABSTRACT

ABSTRACT: We aimed to perform serotyping and the antimicrobial resistance profile of Salmonella spp. and Listeria monocytogenes strains isolated from raw meats imported illegally into Brazil along the borders of Argentina and Uruguay. Distinct isolates of Salmonella spp. (n = 6) and L. monocytogenes (n = 25) obtained from 270 of these food products of earlier work were serotyped and tested for antimicrobial resistance by agar disk diffusion method. For strains that were considered phenotypically resistant, antimicrobial resistance genes were investigated: strA, strB, floR, tetA, tetB, blaZ, blaTEM, ermB, ermC, and ereB to Salmonella sp. and blaZ and mecA to L. monocytogenes. All Salmonella isolates were identified as Salmonella Infantis; they were multidrug resistant and harbored the genes blaTEM (n = 6), strA (n = 1), strB (n = 1), floR (n = 1), ermB (n = 1), tetA (n = 3), and tetB (n = 3). L. monocytogenes isolates belonged to serovars 1/2a (n = 1), 1/2b (n = 14), 1/2c (n = 2), and 4b (n = 8), showed resistance only to penicillin G (n = 12), and did not show the blaZ and mecA genes. The results demonstrated that illegal foods that are commercialized in the Brazilian international border with Argentina and Uruguay may harbor foodborne pathogens, and some of them have multidrug resistance characteristics, such as Salmonella, emphasizing the need for greater control of international food transit in Brazil, especially in the region evaluated.


Subject(s)
Listeria monocytogenes , Anti-Bacterial Agents/pharmacology , Argentina , Brazil , Drug Resistance, Bacterial , Food Microbiology , Salmonella , Uruguay
10.
FEMS Microbiol Lett ; 364(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28444242

ABSTRACT

Intense manipulation during beef jerky production increases the possibility of contamination with pathogenic microorganisms. This study evaluated the contamination by thermotolerant coliforms, Escherichia coli and Salmonella spp., on processing surfaces and raw materials during beef jerky production, as well as in the final product. Thermotolerant coliforms were found on all surfaces tested and in the raw material. Escherichia coli was identified in 6.7% of the surface samples, while Salmonella spp. was found in 3.3% of the surface samples and 8.6% of raw material samples. Virulence genes were detected in Salmonella spp. isolates. One Salmonella spp. isolate was resistant to sulfonamide, while one E. coli isolate was multiresistant, including the presence of resistance genes sul2, strA, strB, tetA and tetB. The presence of coliforms demonstrates failings in hygienic-sanitary procedures. The presence of pathogenic microorganisms causing foodborne diseases in the production line indicates persistent contamination in the production plant. Although the drying process applied to beef jerky should guarantee the safety of the final product, the presence of multiresistant pathogenic microorganisms, presenting virulence genes, should be a matter of concern. Because beef jerky is a ready-to-eat product, a failure in the production process may cause such microorganisms to pose a public health risk.


Subject(s)
Drug Resistance, Multiple, Bacterial , Escherichia coli/pathogenicity , Meat Products/microbiology , Salmonella/pathogenicity , Virulence Factors/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli O157/drug effects , Food Handling , Food Microbiology , Foodborne Diseases/prevention & control , Red Meat/microbiology , Salmonella/drug effects , Salmonella/genetics , Salmonella/isolation & purification , Sanitation , Thermotolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...