Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 109(1): 102-116, 2021 01.
Article in English | MEDLINE | ID: mdl-32700831

ABSTRACT

In the field of bone regenerative medicine, injectable calcium phosphate cements (CPCs) are used for decades in clinics, as bone void fillers. Most often preformed polymers (e.g., hyaluronic acid, collagen, chitosan, cellulose ethers…) are introduced in the CPC formulation to make it injectable and improve its cohesion. Once the cement has hardened, the polymer is simply trapped in the CPC structure and no organic subnetwork is present. By contrast, in this work a CPC was combined with organic monomers that reticulated in situ so that a continuous biocompatible 3D polymeric subnetwork was formed in the CPC microstructure, resulting in a higher permeability of the CPC, which might allow to accelerate its in vivo degradation. Two options were investigated depending on whether the polymer was formed before the apatitic inorganic network or concomitantly. In the former case, conditions were found to reach a suitable rheology for easy injection of the composite. In addition, the in situ formed polymer was shown to strongly affect the size, density, and arrangement of the apatite crystals formed during the setting reaction, thereby offering an original route to modulate the microstructure and porosity of apatitic cements.


Subject(s)
Apatites/chemistry , Biocompatible Materials/chemistry , Bone Cements/chemistry , Bone Substitutes/chemistry , Hydrogels/chemistry , Bone Regeneration , Bone and Bones , Compressive Strength , Humans , Injections , Materials Testing , Porosity
2.
J Mater Sci Mater Med ; 30(1): 6, 2018 Dec 29.
Article in English | MEDLINE | ID: mdl-30594987

ABSTRACT

Bone substitute fabrication is of interest to meet the worldwide incidence of bone disorders. Physical chitosan hydrogels with intertwined apatite particles were chosen to meet the bio-physical and mechanical properties required by a potential bone substitute. A set up for 3-D printing by robocasting was found adequate to fabricate scaffolds. Inks consisted of suspensions of calcium phosphate particles in chitosan acidic aqueous solution. The inks are shear-thinning and consist of a suspension of dispersed platelet aggregates of dicalcium phosphate dihydrate in a continuous chitosan phase. The rheological properties of the inks were studied, including their shear-thinning characteristics and yield stress. Scaffolds were printed in basic water/ethanol baths to induce transformation of chitosan-calcium phosphates suspension into physical hydrogel of chitosan mineralized with apatite. Scaffolds consisted of a chitosan polymeric matrix intertwined with poorly crystalline apatite particles. Results indicate that ink rheological properties could be tuned by controlling ink composition: in particular, more printable inks are obtained with higher chitosan concentration (0.19 mol·L-1).


Subject(s)
Calcium Phosphates/chemistry , Chitosan/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Biocompatible Materials , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...