Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935150

ABSTRACT

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Subject(s)
Biodegradation, Environmental , Genome, Bacterial , Genomics , Geologic Sediments , Polycyclic Aromatic Hydrocarbons , Rhodococcus , Rhodococcus/genetics , Rhodococcus/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Geologic Sediments/microbiology , Naphthalenes/metabolism , Phylogeny , Phenanthrenes/metabolism , Salt Tolerance , Pyrenes
2.
Environ Res ; 257: 119299, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38824984

ABSTRACT

Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (µ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.


Subject(s)
Environmental Monitoring , Food Chain , Halogenated Diphenyl Ethers , Kelp , Microplastics , Water Pollutants, Chemical , Halogenated Diphenyl Ethers/analysis , Kelp/chemistry , Water Pollutants, Chemical/analysis , Animals , Microplastics/analysis
3.
Mar Pollut Bull ; 186: 114433, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495612

ABSTRACT

Microplastics (MPs, < 5 mm in size) are highly bioavailable to many taxa within the marine ecosystem, either ingested directly or indirectly through trophic transfer from polluted prey. The ingestion analysis of these MPs from top predators, such as pinnipeds in Mexico, is relatively unexplored. Forty-eight scats from California sea lions were collected on six rookeries along the Gulf of California. From these scat samples, 294 suspected MPs particles were classified and chemically analyzed; 34% were synthetic and semi-synthetic, and 66% were non-synthetic. Blue-colored polyethylene terephthalate fibers were the most common type of MP registered. During laboratory work, multiple contamination control measures were implemented. Although the ingestion pathway is still unknown, our results support the other authors that suggest the potential trophic transfer of MPs to top predators and incidental ingestion while foraging. The particles documented here provide important baseline information for future MP research in the Gulf of California.


Subject(s)
Caniformia , Sea Lions , Animals , Plastics/analysis , Microplastics , Mexico , Ecosystem
4.
Sci Total Environ ; 806(Pt 4): 151369, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34740652

ABSTRACT

Despite the intensive use of organochlorine pesticides (OCPs) in the proximity of the Gulf of California, there is no information regarding their levels in predatory shark species, which could be exposed to relatively high concentrations. In this area, neonates and juveniles of the critically endangered scalloped hammerhead Sphyrna lewini are caught for consumption, so the examination of the accumulation of OCPs is necessary for future conservation, as well as to assess the exposure to humans. Levels and accumulation patterns of 29 OCPs were analyzed in the liver and muscle of 20 immature scalloped hammerheads. Twenty-three compounds were detected in liver and 17 OCPs were found in muscle. In the latter tissue, only p,p'-DDE presented concentrations above the detection limit in all samples (0.59 ± 0.21 ng/g w.w.), while in the liver, DDTs were also the main group of pesticides (215 ± 317 ng/g w.w.), followed by ∑Chlordanes > ∑Chlorobenzenes > Mirex > HCBD > Others. One of the two analyzed neonates presented high concentrations of OCPs in the liver (1830 ng/g w.w.), attributed to a bioamplification process. No differences in accumulation of OCPs were found between juveniles of both sexes, where an increase in the concentration of various compounds related with size and age was observed. Additionally, juveniles under 2 years of age may undergo a growth dilution process. Our results suggest that the consumption of this species does not imply risks to human health (chronic or carcinogenic effects) associated with OCPs. Likewise, we recommend further monitoring due to the possible recent inputs of some OCPs (e.g. dicofol, median of ratio o, p'-DDT/p, p'-DDT = 0.7) into the environment.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Sharks , Animals , Bioaccumulation , DDT/analysis , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , Mexico , Pesticides/analysis
5.
Environ Monit Assess ; 193(10): 633, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34490544

ABSTRACT

Diagnostic ratios and compound-specific isotopic analysis (CSIA) are two tools that can help identify and differentiate the petrogenic and biogenic sources of hydrocarbons found in environmental samples. The present study aims to evaluate the concentration and type of n-alkanes and isoprenoids found in the oligotrophic waters of the Gulf of Mexico (n = 14), and through the typical diagnostic ratios reported for n-alkanes and its carbon isotopic composition (δ13C) to establish and differentiate the possible source of the hydrocarbons. Additionally, crude oil samples (n = 10) extracted in the Gulf of Mexico were evaluated by CSIA as a possible source of hydrocarbons to the study area. We found that the CSIA of δ13C for n-alkanes (n-C11 to n-C30) and isoprenoids (pristane and phytane) found in the surface water samples varied from - 25.55 to - 37.59‰ and from - 23.78 to - 33.97‰ in the crude oil samples, values which are more related to petrogenic sources. An analysis of the δ13C for pristane vs. phytane suggests that only three surface water samples show an origin in common that those observed in crude oils of the Gulf of Mexico. A low incidence of odd- and even-numbered n-alkanes higher than n-C25 in the water samples indicate low to negligible presence of terrigenous sources into the area, which was supported by the carbon isotopic composition of the individual n-alkanes.


Subject(s)
Petroleum , Water Pollutants, Chemical , Alkanes/analysis , Carbon Isotopes/analysis , Environmental Monitoring , Geologic Sediments , Gulf of Mexico , Petroleum/analysis , Terpenes , Water Pollutants, Chemical/analysis
6.
Environ Pollut ; 290: 118031, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34455298

ABSTRACT

As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via µ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.


Subject(s)
Ostreidae , Water Pollutants, Chemical , Animals , Bays , Environmental Monitoring , Humans , Mexico , Microplastics , Plastics , Seasons , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 703: 134838, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31731152

ABSTRACT

Microplastics (MPs) are ubiquitous and a threat to marine and freshwater environments. Effluent waters from secondary wastewater treatment plants (WWTPs) into Todos Santos Bay (TSB) were investigated as sources of MPs. MPs were detected in all analyzed matrices and presented variable morphologies. MPs from surface water samples (n = 18) varied from 0.01 to 0.70 plastic particles/m3 (pp/m3). Fragments (47 ±â€¯23%) and fibers (47 ±â€¯23%) were the most abundant particles found in the surface water samples. In sediment samples (n = 11), MPs varied from 85 to 2494 pp/0.1 m2. Sediment samples showed fragments of 70 ±â€¯19%, fibers 28 ±â€¯18% in mean. The range of MP values from WWTP effluents (n = 24) was 81 to 1556 pp/m3, and fibers (65 ±â€¯28%) were the most abundant MP particles. Several synthetic polymers (polypropylene, polyethylene, polyethylene-propylene, polyvinyl chloride, cellophane), and natural fibers (cotton and wood) were identified. The surface currents and the parameters that modulate them, are the main factors that dominate the distribution of MPs in surface waters. While in the sediments the parameters such as bathymetry and grain size distribution have more influence on their distribution in the marine environment, where the effluent waters from WWTPs only contributes MPs to the TSB.

8.
Article in English | MEDLINE | ID: mdl-31306803

ABSTRACT

The adverse effect of crude oil on marine invertebrates is well known. To have a better understanding of its effects on marine invertebrates, Crassostrea virginica was exposed to different concentrations (50, 100 and 200 µg/L) of a mixture of super-light and light crude oil for two weeks, evaluating the transcriptomic response of the digestive gland using RNA-Seq and their accumulation in soft tissues. A total of 33,469,374 reads were assembled, which resulted in 61,356 genome assemblies ('Genes'). Trinotate was used for transcript annotation. At the end of this process, 86,409 transcripts were maintained, comprising a broad set of enzymes from xenobiotics metabolism, oxidative stress, stress and immune responses, and energetic metabolism. The enrichment analysis revealed a change in biological processes and molecular functions, finding from 100 to 200 µg/L. Moreover, the differential gene expression analysis showed a dose-dependent transcriptional response, generally up to 100 µg/L and in some cases up to 200 µg/L, which suggested that oysters' response decreased after 100 µg/L; the analysis of crude oil presence in soft tissues indicated that C. virginica is a suitable candidate for ecotoxicology. Finally, these results should contribute to expanding current genomic resources for C. virginica. Furthermore, they will help to develop new studies in aquatic toxicology focused on knowledge in depth of metabolic pathways, jointly with other approaches (such as proteomics) to allow obtaining a complete idea about the eastern oyster response to crude oil.


Subject(s)
Crassostrea , Hydrocarbons/metabolism , Petroleum Pollution/adverse effects , Petroleum , Water Pollutants, Chemical , Water Pollution, Chemical/adverse effects , Animals , Crassostrea/genetics , Crassostrea/metabolism , Gene Expression Profiling , Petroleum/metabolism , Petroleum/toxicity , Seafood , Transcriptome/genetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
9.
Environ Toxicol Chem ; 36(11): 3057-3064, 2017 11.
Article in English | MEDLINE | ID: mdl-28577330

ABSTRACT

Pyrethroids are insecticides widely used to control pests and disease vectors in residential areas and agricultural lands. Pyrethroids are emerging pollutants, and their use is a growing concern because of their toxicity potential to aquatic organisms. Todos Santos Bay and the Punta Banda estuary, 2 coastal bodies located to the south of the Southern California Bight, were studied to establish a baseline of the current conditions of pollution by pyrethroids and fipronil. Eight pyrethroids, along with fipronil and its 2 metabolites, were determined in effluents from wastewater-treatment plants (n = 3), surface sediments (n = 32), and 3 locations with mussels (Mytilus californianus, n = 9). Bifenthrin, permethrin, and cypermethrin were the most common pyrethroids found in the study areas and were widespread in sediments, mussels, and wastewater-treated effluents. Fipronil and its metabolites were detected in mussels and wastewater-treated effluents only. Total pyrethroid concentrations in sediments ranged from 0.04 to 1.95 ng/g dry weight in the Punta Banda estuary (n = 13) and from 0.07 to 6.62 ng/g dry weight in Todos Santos Bay (n = 19). Moreover, total pyrethroids in mussels ranged from 1.19 to 6.15 ng/g wet weight. Based on the toxic unit data calculated for pyrethroids and fipronil for Eohaustorius estuarius and Hyalella azteca, little to no impact is expected to the benthic population structure. Environ Toxicol Chem 2017;36:3057-3064. © 2017 SETAC.


Subject(s)
Geologic Sediments/chemistry , Insecticides/analysis , Pyrazoles/analysis , Pyrethrins/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Amphipoda/chemistry , Animals , Bays/chemistry , Estuaries , Mexico , Permethrin/analysis , Pesticide Residues/analysis
10.
Chemosphere ; 173: 275-287, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28113064

ABSTRACT

The agricultural Mexicali and Yaqui valleys (MV, YV) in northwest Mexico were heavily treated with organochlorine pesticides in the past. Residential soils and agricultural drain sediments were sampled in 2008-2009 and analyzed for DDTs (o,p'- and p,p'- isomers of DDE, DDD and DDT); hexachlorocyclohexanes (α-, ß-, γ- and δ-HCH) and chlordanes (trans-chlordane, cis-chlordane, heptachlor and heptachlor exo-epoxide). Geometric means (GMs) (ng g-1 dry weight) were: MV soils (n = 27) ΣDDT 22, ΣHCH 0.80, ΣCHL 0.88; YV soils (n = 25) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.67; MV sediments (n = 3) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.53; YV sediments (n = 8) ΣDDT 2.6, ΣHCH 0.12, ΣCHL 0.090. GMs were significantly higher (p < 0.05) in MV than YV soils for ΣDDT and ΣHCH, but not for ΣCHL. Comparison to worldwide regulatory guideline values (RGVs) for residential soils showed all compounds below mean or GM RGVs, but above the lowest RGV in some cases. Low p,p'-DDT/(p,p'-DDT + p,p'-DDE) in most soils indicated aged residues. Lack of p,p'-DDT metabolism might account for its dominance in a few soils. HCH isomer profiles suggested aged technical HCH in the YV, and technical HCH + lindane in the MV. Heptachlor dominated the ΣCHL, probably from application of technical heptachlor as well as chlordane. Chiral compounds were nonracemic in soils and sediments and indicated enantioselective microbial degradation of (+)α-HCH, (-)trans-chlordane, (-)cis-chlordane and (+)o,p'-DDT. Depletion of (+)o,p'-DDT in soils may account for similar enantiomer signatures previously reported in air of northwest Mexico.


Subject(s)
Geologic Sediments/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Environmental Monitoring , Geologic Sediments/chemistry , Humans , Hydrocarbons, Chlorinated/chemistry , Mexico , Pesticides/chemistry , Residence Characteristics , Soil Pollutants/chemistry
11.
Environ Toxicol Chem ; 26(11): 2332-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17941733

ABSTRACT

We measured stable isotope ratios (delta(13)C and delta(15)N) of particulate organic matter (POM) sources and benthic organic matter compartments as well as sediment C to N ratios from the coastal area of the southern end of the Southern California Bight (SCB). We used the isotopic values to evaluate the relative importance of the major POM sources to the sediment and two benthic macroinvertebrates. Application of a simple model to sediment delta(13)C values suggested that sewage-derived POM (SDPOM) supplies an average of 48% of the organic C to study area sediments. Application of a similar model to Spiophanes duplex delta(13)C values suggested that SDPOM from wastewater treatment plants discharging into the SCB could supply up to 57% of the C assimilated by this important benthic macroinvertebrate in areas as far away as 26 km from SDPOM inputs. The stable isotope data for Amphiodia urtica were more difficult to interpret because of the complex feeding habits of this organism.


Subject(s)
Carbon/analysis , Geologic Sediments/analysis , Nitrogen/analysis , Organic Chemicals/analysis , Particulate Matter/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Animals , California , Carbon Isotopes/analysis , Climate , Geography , Geologic Sediments/chemistry , Invertebrates , Nitrogen Isotopes/analysis , Seawater , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL