Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35680377

ABSTRACT

Oxidative damage is believed to play a major role in the etiology of many age-related diseases and the normal aging process. We previously reported that sulindac, a cyclooxygenase (COX) inhibitor and FDA approved anti-inflammatory drug, has chemoprotective activity in cells and intact organs by initiating a pharmacological preconditioning response, similar to ischemic preconditioning (IPC). The mechanism is independent of its COX inhibitory activity as suggested by studies on the protection of the heart against oxidative damage from ischemia/reperfusion and retinal pigmented endothelial (RPE) cells against chemical oxidative and UV damage . Unfortunately, sulindac is not recommended for long-term use due to toxicities resulting from its COX inhibitory activity. To develop a safer and more efficacious derivative of sulindac, we screened a library of indenes and identified a lead compound, MCI-100, that lacked significant COX inhibitory activity but displayed greater potency than sulindac to protect RPE cells against oxidative damage. MCI-100 also protected the intact rat heart against ischemia/reperfusion damage following oral administration. The chemoprotective activity of MCI-100 involves a preconditioning response similar to sulindac, which is supported by RNA sequencing data showing common genes that are induced or repressed by sulindac or MCI-100 treatment. Both sulindac and MCI-100 protection against oxidative damage may involve modulation of Wnt/ß-catenin signaling resulting in proliferation while inhibiting TGFb signaling leading to apoptosis. In summary MCI-100, is more active than sulindac in protecting cells against oxidative damage, but without significant NSAID activity, and could have therapeutic potential in treatment of diseases that involve oxidative damage. Significance Statement In this study, we describe a novel sulindac derivative, MCI-100, that lacks significant COX inhibitory activity, but is appreciably more potent than sulindac in protecting retinal pigmented epithelial (RPE) cells against oxidative damage. Oral administration of MCI-100 markedly protected the rat heart against ischemia/reperfusion damage. MCI-100 has potential therapeutic value as a drug candidate for age-related diseases by protecting cells against oxidative damage and preventing organ failure.

2.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Article in English | MEDLINE | ID: mdl-34584001

ABSTRACT

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Carcinogenesis , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Mice , Phosphodiesterase Inhibitors/pharmacology , Sulindac/pharmacology
3.
Kidney Int Rep ; 6(5): 1379-1396, 2021 May.
Article in English | MEDLINE | ID: mdl-34013116

ABSTRACT

INTRODUCTION: Deciphering the intricacies of the interactions of glomerulopathic Ig light chains with mesangial cells is key to delineate signaling events responsible for the mesangial pathologic alterations that ensue. METHODS: Human mesangial cells, caveolin 1 (CAV1), wild type (WT) ,and knockout (KO), were incubated with glomerulopathic light chains purified from the urine of patients with light chain-associated (AL) amyloidosis or light chain deposition disease. Associated signaling events induced by surface interactions of glomerulopathic light chains with caveolins and other membrane proteins, as well as the effect of epigallocatechin-3-gallate (EGCG) on the capacity of mesangial cells to intracellularly process AL light chains were investigated using a variety of techniques, including chemical crosslinking with mass spectroscopy, immunofluorescence, and ultrastructural immunolabeling. RESULTS: Crosslinking experiments provide evidence suggesting that sortilin-related receptor (SORL1), a transmembrane sorting receptor that regulates cellular trafficking of proteins, is a component of the receptor on mesangial cells for glomerulopathic light chains. Colocalization of glomerulopathic light chains with SORL1 in caveolae and also in lysosomes when light chain internalization occurred, was documented using double immunofluorescence and immunogold labeling ultrastructural techniques. It was found that EGCG directly blocks c-Fos cytoplasmic to nuclei signal translocation after interactions of AL light chains with mesangial cells, resulting in a decrease in amyloid formation. CONCLUSION: Our findings document for the first time a role for SORL1 linked to glomerular pathology and signaling events that take place when certain monoclonal light chains interact with mesangial cells. This finding may lead to novel therapies for treating renal injury caused by glomerulopathic light chains.

4.
J Exp Clin Cancer Res ; 38(1): 312, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31378204

ABSTRACT

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive and lethal disease, lacking effective therapeutic approaches. Available therapies only marginally prolong patient survival and are frequently coupled with severe adverse events. It is therefore pivotal to investigate novel and safe pharmacological approaches. We have recently identified the ABC transporter, ABCC3, whose expression is dependent on mutation of TP53, as a novel target in PDAC. ABCC3-mediated regulation of PDAC cell proliferation and tumour growth in vivo was demonstrated and was shown to be conferred by upregulation of STAT3 signalling and regulation of apoptosis. METHODS: To verify the potential of ABCC3 as a pharmacological target, a small molecule inhibitor of ABCC3, referred to here as MCI-715, was designed. In vitro assays were performed to assess the effects of ABCC3 inhibition on anchorage-dependent and anchorage-independent PDAC cell growth. The impact of ABCC3 inhibition on specific signalling pathways was verified by Western blotting. The potential of targeting ABCC3 with MCI-715 to counteract PDAC progression was additionally tested in several animal models of PDAC, including xenograft mouse models and transgenic mouse model of PDAC. RESULTS: Using both mouse models and human cell lines of PDAC, we show that the pharmacological inhibition of ABCC3 significantly decreased PDAC cell proliferation and clonal expansion in vitro and in vivo, remarkably slowing tumour growth in mice xenografts and patient-derived xenografts and increasing the survival rate in a transgenic mouse model. Furthermore, we show that stromal cells in pancreatic tumours, which actively participate in PDAC progression, are enriched for ABCC3, and that its inhibition may contribute to stroma reprogramming. CONCLUSIONS: Our results indicate that ABCC3 inhibition with MCI-715 demonstrated strong antitumor activity and is well tolerated, which leads us to conclude that ABCC3 inhibition is a novel and promising therapeutic strategy for a considerable cohort of patients with pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Biomarkers , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Reprogramming/genetics , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Mice, Transgenic , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/mortality , Prognosis , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Stromal Cells/metabolism , Xenograft Model Antitumor Assays
5.
Oncotarget ; 8(41): 69264-69280, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-29050202

ABSTRACT

Phosphodiesterase 10A (PDE10) is a cyclic nucleotide (e.g. cGMP) degrading enzyme highly expressed in the brain striatum where it plays an important role in dopaminergic neurotransmission, but has limited expression and no known physiological function outside the central nervous system. Here we report that PDE10 mRNA and protein levels are strongly elevated in human non-small cell lung cancer cells and lung tumors compared with normal human airway epithelial cells and lung tissue, respectively. Genetic silencing of PDE10 or inhibition by small molecules such as PQ10 was found to selectively inhibit the growth and colony formation of lung tumor cells. PQ10 treatment of lung tumor cells rapidly increased intracellular cGMP levels and activated cGMP-dependent protein kinase (PKG) at concentrations that inhibit lung tumor cell growth. PQ10 also increased the phosphorylation of ß-catenin and reduced its levels, which paralleled the suppression of cyclin D1 and survivin but preceded the activation of PARP and caspase cleavage. PQ10 also suppressed RAS-activated RAF/MAPK signaling within the same concentration range and treatment period as required for cGMP elevation and PKG activation. These results show that PDE10 is overexpressed during lung cancer development and essential for lung tumor cell growth in which inhibitors can selectively induce apoptosis by increasing intracellular cGMP levels and activating PKG to suppress oncogenic ß-catenin and MAPK signaling.

6.
Oncotarget ; 6(29): 27403-15, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26299804

ABSTRACT

Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone. A novel sulindac derivative, ADT-094 was designed to lack COX-1/-2 inhibitory activity but have improved potency to inhibit PDE5 and 10. ADT-094 displayed >500 fold higher potency to inhibit colon tumor cell growth compared with sulindac by activating cGMP/PKG signaling to suppress proliferation and induce apoptosis. Combined inhibition of PDE5 and 10 by treatment with ADT-094, PDE isozyme-selective inhibitors, or by siRNA knockdown also suppresses ß-catenin, TCF transcriptional activity, and the levels of downstream targets, cyclin D1 and survivin. These results suggest that dual inhibition of PDE5 and 10 represents novel strategy for developing potent and selective anticancer drugs.


Subject(s)
Acetamides/chemistry , Colonic Neoplasms/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Indenes/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , beta Catenin/metabolism , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Computer Simulation , Cyclin D1/metabolism , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Inhibitor of Apoptosis Proteins/metabolism , Inhibitory Concentration 50 , RNA, Small Interfering/metabolism , Signal Transduction , Sulindac/chemistry , Survivin , Transcription, Genetic , beta Catenin/antagonists & inhibitors
7.
Am J Physiol Gastrointest Liver Physiol ; 306(11): G1002-10, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24742986

ABSTRACT

Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 µM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa.


Subject(s)
Arylamine N-Acetyltransferase/metabolism , Colitis/pathology , Colon/metabolism , Gene Expression Regulation, Enzymologic/physiology , Mesalamine/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Arylamine N-Acetyltransferase/genetics , Colitis/chemically induced , Dextran Sulfate/toxicity , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL
8.
Curr Drug Metab ; 12(3): 245-52, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21395536

ABSTRACT

Many nonsteroidal anti-inflammatory drugs (NSAIDs) are carboxylic acid-containing compounds that are conjugated in the liver to acyl glucuronides and excreted across the hepatocanalicular membrane into bile. Chronic and acute NSAID use has not only been associated with gastric injury but also increasingly recognized to cause small intestinal injury (enteropathy). The mechanisms of NSAID enteropathy are still unknown, but a combination of topical effects (including mitochondrial injury) combined with inhibition of COX1/2, followed by an inflammatory response triggered by LPS-mediated activation of LTR4 on macrophages, have been implicated in the pathogenesis. Some of the nucleophilic proteins that are targeted by the electrophilic NSAID acyl glucuronides or their iso-glucuronides have been identified both in bile canaliculi and on the apical membrane domain of enterocytes (e.g., aminopeptidase N); however, the mechanistic role of covalent adducts has remained enigmatic. In contrast, it has become increasingly clear that acyl glucuronide formation is a major toxicokinetic determinant, in that the drug conjugates are a transport form delivering the drug to the more distal parts of the jejunum/ileum, where the glucuronic acid moiety is cleaved off the aglycone due to higher local pH and the presence of bacterial ß-glucuronidase. Through this mechanism, high local concentrations of the parent NSAID can be attained, potentially leading to local tissue injury. Thus, even if one considers the formation of acyl glucuronides not as a potentially dangerous toxophore by virtue of their protein-reactivity, acyl glucuronides could still be a red flag in drug development if excreted at high rates into bile and delivered to more distal areas of the small intestine where high amounts of parent drug is released.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Glucuronides/metabolism , Intestinal Diseases/chemically induced , Intestine, Small/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Glucuronides/chemistry , Humans , Intestinal Diseases/metabolism , Intestinal Diseases/pathology , Intestine, Small/metabolism , Intestine, Small/pathology
9.
Toxicol Sci ; 118(1): 276-85, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20668000

ABSTRACT

Small intestinal ulceration is a frequent and potentially serious condition associated with nonselective cyclooxygenase 1/2 inhibitors (nonsteroidal anti-inflammatory drugs, NSAIDs) including diclofenac (DCF). An initial topical effect involving mitochondria has been implicated in the pathogenesis, but the exact mechanisms of NSAID-induced enteropathy are unknown. We aimed at investigating whether DCF caused enterocyte demise via the mitochondrial permeability transition (mPT) and whether inhibition of critical mPT regulators might protect the mucosa from DCF injury. Cultured enterocytes (IEC-6) exposed to DCF readily underwent mPT-mediated cell death. We then targeted mitochondrial cyclophilin D (CypD), a key regulator of the mPT, in a mouse model of NSAID enteropathy. C57BL/6J mice were treated with an ulcerogenic dose of DCF (60 mg/kg, ip), followed (+ 1 h) by a non-cholestatic dose (10 mg/kg, ip) of the CypD inhibitor, cyclosporin A (CsA). CsA greatly reduced the extent of small intestinal ulceration. To avoid potential calcineurin-mediated effects, we used the non-immunosuppressive cyclosporin analog, D-MeAla(3)-EtVal(4)-cyclosporin (Debio 025). Debio 025 similarly protected the mucosa from DCF injury. To exclude drug-drug interactions, we exposed mice genetically deficient in mitochondrial CypD (peptidyl-prolyl cis-trans isomerase F [Ppif(-/-)]) to DCF. Ppif-null mice were largely protected from the ulcerogenic effects of DCF, whereas their wild-type littermates developed typical enteropathy. Enterocyte injury was preceded by upregulation of the proapoptotic transcription factor C/EBP homologous protein (Chop). Chop-null mice were refractory to DCF enteropathy, suggesting a critical role of endoplasmic reticulum stress induced by DCF. In conclusion, mitochondrial CypD plays a key role in NSAID-induced enteropathy, lending itself as a potentially new therapeutic target for cytoprotective intervention.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , Cyclophilins/metabolism , Diclofenac/toxicity , Intestinal Diseases/prevention & control , Mitochondria/drug effects , Ulcer/prevention & control , Animals , Cell Line , Cell Survival/drug effects , Peptidyl-Prolyl Isomerase F , Cyclophilins/antagonists & inhibitors , Cyclophilins/deficiency , Cyclosporine/pharmacology , Disease Models, Animal , Enterocytes/drug effects , Enterocytes/pathology , Intestinal Diseases/chemically induced , Intestinal Diseases/pathology , Intestine, Small/drug effects , Intestine, Small/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Mitochondrial Swelling/drug effects , Ulcer/chemically induced , Ulcer/pathology
10.
Am J Physiol Gastrointest Liver Physiol ; 297(5): G990-8, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20501447

ABSTRACT

Small intestinal ulceration, bleeding, and inflammation are major adverse effects associated with the use of diclofenac (DCF) or other nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms of DCF enteropathy are poorly understood, but there is increasing evidence that topical effects are involved. The aim of this study was to explore the role of c-Jun-N-terminal kinase (JNK) in DCF-induced enterocyte death because JNK not only regulates mitochondria-mediated apoptosis but also is a key node where many of the proximal stress signals converge. Male C57BL/6J mice were injected intraperitoneally with DCF or vehicle (Solutol HS-15), and the extent of small intestinal ulceration was determined. A single dose of DCF (60 mg/kg) produced numerous ulcers in the third and fourth quartiles of the jejunum and ileum, with maximal effects after 18 h and extensive recovery after 48 h. To study the molecular pathways leading to enterocyte injury, we isolated villi-enriched mucosal fractions from DCF-treated mice. Immunoblot studies with a phosphospecific JNK antibody revealed that JNK1/2 (p46) was activated at 6 h, leading to phosphorylation of the downstream target c-Jun. The levels of the JNK-regulated proapoptotic transcription factor C/EBP homologous protein (CHOP) were also increased after DCF. The selective JNK inhibitor SP600125 (30 mg/kg ip), given both 1 h before and 1 h after DCF, blocked JNK kinase activity and afforded significant protection against DCF enteropathy. In conclusion, these data demonstrate that the JNK pathway is critically involved in the pathogenesis of DCF-induced enteropathy and suggest a potential application of JNK inhibitors in the prevention of NSAID-induced enteropathy.


Subject(s)
Anthracenes/pharmacology , Diclofenac/adverse effects , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Intestine, Small/drug effects , Ulcer/chemically induced , Ulcer/prevention & control , Alkaline Phosphatase/blood , Alkaline Phosphatase/metabolism , Animals , Anthracenes/therapeutic use , Apoptosis/drug effects , Blood Proteins/metabolism , Diclofenac/pharmacology , Intestinal Diseases/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Microvilli/drug effects , Microvilli/enzymology , Microvilli/metabolism , Mitochondria/drug effects , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-jun/metabolism , Transcription Factor CHOP/metabolism , Ulcer/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...