Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 39(2): 282-94, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26173848

ABSTRACT

The timing of flowering initiation depends strongly on the environment, a property termed as the plasticity of flowering. Such plasticity determines the adaptive potential of plants because it provides phenotypic buffer against environmental changes, and its natural variation contributes to evolutionary adaptation. We addressed the genetic mechanisms of the natural variation for this plasticity in Arabidopsis thaliana by analysing a population of recombinant inbred lines derived from Don-0 and Ler accessions collected from distinct climates. Quantitative trait locus (QTL) mapping in four environmental conditions differing in photoperiod, vernalization treatment and ambient temperature detected the folllowing: (i) FLOWERING LOCUS C (FLC) as a large effect QTL affecting flowering time differentially in all environments; (ii) numerous QTL displaying smaller effects specifically in some conditions; and (iii) significant genetic interactions between FLC and other loci. Hence, the variation for the plasticity of flowering is determined by a combination of environmentally sensitive and specific QTL, and epistasis. Analysis of FLC from Don identified a new and more active allele likely caused by a cis-regulatory deletion covering the non-coding RNA COLDAIR. Further characterization of four FLC natural alleles showed different environmental and genetic interactions. Thus, FLC appears as a major modulator of the natural variation for the plasticity of flowering to multiple environmental factors.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Environment , Flowers/genetics , Flowers/physiology , Genetic Variation , MADS Domain Proteins/genetics , Alleles , Arabidopsis/growth & development , Chromosome Mapping , Ecotype , Flowers/growth & development , Genotype , Inbreeding , Quantitative Trait Loci/genetics , Reproducibility of Results
2.
Plant Physiol ; 157(4): 1942-55, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21988878

ABSTRACT

Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0-2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.


Subject(s)
Acclimatization/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Polymorphism, Genetic/genetics , Alleles , Altitude , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Base Sequence , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Genetic Association Studies , Genetics, Population , Genotype , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Molecular Sequence Data , Mutation , Phenotype , Phytochrome/genetics , Phytochrome/metabolism , Seasons , Selection, Genetic/genetics , Sequence Analysis, DNA , Weather
3.
J Exp Bot ; 61(6): 1611-23, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20190039

ABSTRACT

Vegetative growth and flowering initiation are two crucial developmental processes in the life cycle of annual plants that are closely associated. The timing of both processes affects several presumed adaptive traits, such as flowering time (FT), total leaf number (TLN), or the rate of leaf production (RLP). However, the interactions among these complex processes and traits, and their mechanistic bases, remain largely unknown. To determine the genetic relationships between them, the natural genetic variation between A. thaliana accessions Fei-0 and Ler has been studied using a new population of 222 LerxFei-0 recombinant inbred lines. Temporal analysis of the parental development under a short day photoperiod distinguishes two vegetative phases differing in their RLP. QTL mapping of RLP in consecutive time intervals of vegetative development indicates that Ler/Fei-0 variation is caused by 10 loci whose small to moderate effects mainly display two different temporal patterns. Further comparative QTL analyses show that most of the genomic regions affecting FT or TLN also alter RLP. In addition, the partially independent genetic bases observed for FT and TLN appear determined by several genomic regions with two different patterns of phenotypic effects: regions with a larger effect on FT than TLN, and vice versa. The distinct temporal and pleiotropic patterns of QTL effects suggest that natural variation for flowering time is caused by different genetic mechanisms involved in vegetative and/or reproductive phase changes, most of them interacting with the control of leaf production rate. Thus, natural selection might contribute to maintain this genetic variation due to its phenotypic effects not only on the timing of flowering initiation but also on the rate of vegetative growth.


Subject(s)
Arabidopsis/growth & development , Flowers/growth & development , Plant Leaves/growth & development , Arabidopsis/genetics , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Leaves/genetics , Quantitative Trait Loci/genetics
4.
BMC Plant Biol ; 9: 147, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20003424

ABSTRACT

BACKGROUND: Arabidopsis thaliana is the main model species for plant molecular genetics studies and world-wide efforts are devoted to identify the function of all its genes. To this end, reverse genetics by TILLING (Targeting Induced Local Lesions IN Genomes) in a permanent collection of chemically induced mutants is providing a unique resource in Columbia genetic background. In this work, we aim to extend TILLING resources available in A. thaliana by developing a new population of ethyl methanesulphonate (EMS) induced mutants in the second commonest reference strain. In addition, we pursue to saturate the number of EMS induced mutations that can be tolerated by viable and fertile plants. RESULTS: By mutagenizing with different EMS concentrations we have developed a permanent collection of 3712 M2/M3 independent mutant lines in the reference strain Landsberg erecta (Ler) of A. thaliana. This population has been named as the Arabidopsis TILLer collection. The frequency of mutations per line was maximized by using M1 plants with low but sufficient seed fertility. Application of TILLING to search for mutants in 14 genes identified 21 to 46 mutations per gene, which correspond to a total of 450 mutations. Missense mutations were found for all genes while truncations were selected for all except one. We estimated that, on average, these lines carry one mutation every 89 kb, Ler population providing a total of more than five million induced mutations. It is estimated that TILLer collection shows a two to three fold higher EMS mutation density per individual than previously reported A. thaliana population. CONCLUSIONS: Analysis of TILLer collection demonstrates its usefulness for large scale TILLING reverse genetics in another reference genetic background of A. thaliana. Comparisons with TILLING populations in other organisms indicate that this new A. thaliana collection carries the highest chemically induced mutation density per individual known in diploid species.


Subject(s)
Arabidopsis/genetics , Genome, Plant , Mutation , Arabidopsis/drug effects , DNA, Plant/genetics , Ethyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...