Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 8(1): 12088, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108248

ABSTRACT

Prokaryotic and eukaryotic cells exhibit an intrinsic natural fluorescence due to the presence of fluorescent cellular structural components and metabolites. Therefore, cellular autofluorescence (AF) is expected to vary with the metabolic states of cells. We examined how exposure to the different stressors changes the AF of Escherichia coli cells. We observed that bactericidal treatments increased green cellular AF, and that de novo protein synthesis was required for the observed AF increase. Excitation and emission spectra and increased expression of the genes from the flavin biosynthesis pathway, strongly suggested that flavins are major contributors to the increased AF. An increased expression of genes encoding diverse flavoproteins which are involved in energy production and ROS detoxification, indicates a cellular strategy to cope with severe stresses. An observed increase in AF under stress is an evolutionary conserved phenomenon as it occurs not only in cells from different bacterial species, but also in yeast and human cells.


Subject(s)
Adaptation, Physiological , Cell Survival , Fluorescence , Oxidative Stress/physiology , Anti-Bacterial Agents/pharmacology , Bacteria/chemistry , Bacteria/drug effects , Biological Evolution , Energy Metabolism/drug effects , Energy Metabolism/physiology , Flavoproteins/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HeLa Cells , Humans , Optical Imaging/methods , Oxidants/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/toxicity , Spectrometry, Fluorescence , Yeasts/chemistry , Yeasts/drug effects
2.
Diagn Microbiol Infect Dis ; 90(1): 11-17, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29107415

ABSTRACT

Screening for the detection of carbapenemase-producing bacteria still encounters issues related to workflow, limit of detection, or qualitative interpretation. We developed a spectrophotometry-based version of the Carba NP phenol red assay (Nordmann et al., 2012) in a microtiter plate format, compatible with low bacterial cell counts. We were able to detect highly active carbapenemases such as KPC and IMP in 30min. A wider range of carbapenemases including OXA-48 were detected using higher inocula, still being competitive compared with currently available phenol red assays. Validation experiments of our test with a panel of 81 Enterobacteriaceae showed good performance with 93% of sensitivity and 92% of specificity. The compatibility of our routine-friendly protocol with automation offers great perspectives for high throughput screening in outbreak situations and/or in big laboratories.


Subject(s)
Bacterial Proteins/metabolism , Bacteriological Techniques/methods , Biological Assay/methods , Carbapenem-Resistant Enterobacteriaceae/drug effects , Phenolsulfonphthalein/chemistry , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/enzymology , Carbapenem-Resistant Enterobacteriaceae/metabolism , Drug Resistance, Bacterial/physiology , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , beta-Lactamases/genetics
3.
Front Microbiol ; 7: 1121, 2016.
Article in English | MEDLINE | ID: mdl-27507962

ABSTRACT

Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: ß-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

4.
Bioinformatics ; 30(9): 1280-6, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24443381

ABSTRACT

MOTIVATION: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been broadly adopted by routine clinical microbiology laboratories for bacterial species identification. An isolated colony of the targeted microorganism is the single prerequisite. Currently, MS-based microbial identification directly from clinical specimens can not be routinely performed, as it raises two main challenges: (i) the nature of the sample itself may increase the level of technical variability and bring heterogeneity with respect to the reference database and (ii) the possibility of encountering polymicrobial samples that will yield a 'mixed' MS fingerprint. In this article, we introduce a new method to infer the composition of polymicrobial samples on the basis of a single mass spectrum. Our approach relies on a penalized non-negative linear regression framework making use of species-specific prototypes, which can be derived directly from the routine reference database of pure spectra. RESULTS: A large spectral dataset obtained from in vitro mono- and bi-microbial samples allowed us to evaluate the performance of the method in a comprehensive way. Provided that the reference matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprints were sufficiently distinct for the individual species, the method automatically predicted which bacterial species were present in the sample. Only few samples (5.3%) were misidentified, and bi-microbial samples were correctly identified in up to 61.2% of the cases. This method could be used in routine clinical microbiology practice.


Subject(s)
Gram-Negative Bacteria/chemistry , Gram-Positive Bacteria/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Automation , Databases, Genetic , Gram-Negative Bacteria/isolation & purification , Linear Models
5.
Immunity ; 39(5): 858-73, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24238340

ABSTRACT

The peptidoglycan sensor Nod2 and the autophagy protein ATG16L1 have been linked to Crohn's disease (CD). Although Nod2 and the related sensor, Nod1, direct ATG16L1 to initiate anti-bacterial autophagy, whether ATG16L1 affects Nod-driven inflammation has not been examined. Here, we uncover an unanticipated autophagy-independent role for ATG16L1 in negatively regulating Nod-driven inflammatory responses. Knockdown of ATG16L1 expression, but not that of ATG5 or ATG9a, specifically enhanced Nod-driven cytokine production. In addition, autophagy-incompetent truncated forms of ATG16L1 regulated Nod-driven cytokine responses. Mechanistically, we demonstrated that ATG16L1 interfered with poly-ubiquitination of the Rip2 adaptor and recruitment of Rip2 into large signaling complexes. The CD-associated allele of ATG16L1 was impaired in its ability to regulate Nod-driven inflammatory responses. Overall, these results suggest that ATG16L1 is critical for Nod-dependent regulation of cytokine responses and that disruption of this Nod1- or Nod2-ATG16L1 signaling axis could contribute to the chronic inflammation associated with CD.


Subject(s)
Autophagy/physiology , Carrier Proteins/physiology , Cytokines/biosynthesis , Nod1 Signaling Adaptor Protein/physiology , Nod2 Signaling Adaptor Protein/physiology , Animals , Autophagy-Related Protein 5 , Autophagy-Related Proteins , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Crohn Disease/genetics , Crohn Disease/immunology , Crohn Disease/pathology , Cytokines/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Predisposition to Disease , Humans , Inflammation , Intestinal Mucosa/cytology , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/physiology , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Ubiquitination
6.
Gut Microbes ; 1(5): 307-315, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21327039

ABSTRACT

Autophagy is a homeostatic pathway that processes and recycles damaged organelles and other cytoplasmic contents. While studies have implicated autophagy in the immune response to infection, the understanding of how the autophagic machinery specifically targets intracellular pathogens has remained elusive. Two recent studies have uncovered an autophagy-mediated immune response to bacteria through their detection by Nod receptors. In particular, Nod1 and Nod2 recruit the autophagic protein ATG16L1 to the plasma membrane at the bacterial entry site to promote an autophagy-dependent elimination of bacteria. In addition, Nod2 and ATG16L1 synergize to initiate an adaptive immune response to bacterial invasion by enhancing major histocompatibility complex (MHC) class II antigen presentation. These findings link two Crohn disease-associated susceptibility genes and reveal that cells expressing the risk-associated variants of ATG16L1 are defective in autophagy-mediated bacterial handling and antigen presentation. This could lead to bacterial persistence and contribute to the pathogenesis of the disease.

7.
Vet Res ; 41(1): 3, 2010.
Article in English | MEDLINE | ID: mdl-19737507

ABSTRACT

Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible.


Subject(s)
Actinobacillus pleuropneumoniae/physiology , Biofilms/growth & development , Culture Media , Gene Expression Profiling , Gene Expression Regulation, Bacterial/physiology , Microscopy, Confocal
8.
Nat Immunol ; 11(1): 55-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19898471

ABSTRACT

Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-kappaB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease-associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.


Subject(s)
Autophagy , Carrier Proteins/metabolism , Cell Membrane/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Animals , Autophagy-Related Proteins , Bacteria/metabolism , Carrier Proteins/genetics , Cell Line , Cell Membrane/microbiology , Cell Membrane/ultrastructure , Cells, Cultured , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Immunoblotting , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Microscopy, Confocal , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Transfection
9.
Infect Immun ; 77(4): 1426-41, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19139196

ABSTRACT

Host-pathogen interactions are of great importance in understanding the pathogenesis of infectious microorganisms. We developed in vitro models to study the host-pathogen interactions of porcine respiratory tract pathogens using two immortalized epithelial cell lines, namely, the newborn pig trachea (NPTr) and St. Jude porcine lung (SJPL) cell lines. We first studied the interactions of Actinobacillus pleuropneumoniae, an important swine pathogen, using these models. Under conditions where cytotoxicity was absent or low, we showed that A. pleuropneumoniae adheres to both cell lines, stimulating the induction of NF-kappaB. The NPTr cells consequently secrete interleukin 8, while the SJPL cells do not, since they are deprived of the NF-kappaB p65 subunit. Cell death ultimately occurs by necrosis, not apoptosis. The transcriptomic profile of A. pleuropneumoniae was determined after contact with the porcine lung epithelial cells by using DNA microarrays. Genes such as tadB and rcpA, members of a putative adhesin locus, and a gene whose product has high homology to the Hsf autotransporter adhesin of Haemophilus influenzae were upregulated, as were the genes pgaBC, involved in biofilm biosynthesis, while capsular polysaccharide-associated genes were downregulated. The in vitro models also proved to be efficient with other swine pathogens, such as Actinobacillus suis, Haemophilus parasuis, and Pasteurella multocida. Our results demonstrate that interactions of A. pleuropneumoniae with host epithelial cells seem to involve complex cross talk which results in regulation of various bacterial genes, including some coding for putative adhesins. Furthermore, our data demonstrate the potential of these in vitro models in studying the host-pathogen interactions of other porcine respiratory tract pathogens.


Subject(s)
Actinobacillus pleuropneumoniae/physiology , Bacterial Proteins/metabolism , Epithelial Cells/microbiology , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Lung , Trachea , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/metabolism , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Apoptosis , Bacterial Adhesion , Bacterial Proteins/genetics , Cell Line , Cells, Cultured , Epithelial Cells/cytology , Gene Expression Profiling , Lung/cytology , Lung/microbiology , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/methods , Swine , Trachea/cytology , Trachea/microbiology
10.
Mol Microbiol ; 70(1): 221-35, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18713318

ABSTRACT

Lipopolysaccharides (LPS) and Apx toxins are major virulence factors of Actinobacillus pleuropneumoniae, a pathogen of the respiratory tract of pigs. Here, we evaluated the effect of LPS core truncation in haemolytic and cytotoxic activities of this microorganism. We previously generated a highly attenuated galU mutant of A. pleuropneumoniae serotype 1 that has an LPS molecule lacking the GalNAc-Gal II-Gal I outer core residues. Our results demonstrate that this mutant exhibits wild-type haemolytic activity but is significantly less cytotoxic to porcine alveolar macrophages. However, no differences were found in gene expression and secretion of the haemolytic and cytotoxic toxins ApxI and ApxII, both secreted by A. pleuropneumoniae serotype 1. This suggests that the outer core truncation mediated by the galU mutation affects the toxins in their cytotoxic activities. Using both ELISA and surface plasmon resonance binding assays, we demonstrate a novel interaction between LPS and the ApxI and ApxII toxins via the core oligosaccharide. Our results indicate that the GalNAc-Gal II-Gal I trisaccharide of the outer core is fundamental to mediating LPS/Apx interactions. The present study suggests that a lack of binding between LPS and ApxI/II affects the cytotoxicity and virulence of A. pleuropneumoniae.


Subject(s)
Actinobacillus pleuropneumoniae/genetics , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Hemolysin Proteins/metabolism , Lipopolysaccharides/metabolism , Actinobacillus Infections/microbiology , Actinobacillus Infections/veterinary , Actinobacillus pleuropneumoniae/metabolism , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Cloning, Molecular , Cytotoxins/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression , Genes, Bacterial , Macrophages, Alveolar/microbiology , Mutation , Protein Interaction Domains and Motifs , RNA, Bacterial/genetics , Reverse Transcriptase Polymerase Chain Reaction , Surface Plasmon Resonance , Swine , Swine Diseases/microbiology , Virulence , Virulence Factors/metabolism
11.
Anim Health Res Rev ; 9(1): 25-45, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18346296

ABSTRACT

With the growing emergence of antibiotic resistance and rising consumer demands concerning food safety, vaccination to prevent bacterial infections is of increasing relevance. Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease leading to severe economic losses in the swine industry. Despite all the research and trials that were performed with A. pleuropneumoniae vaccination in the past, a safe vaccine that offers complete protection against all serotypes has yet not reached the market. However, recent advances made in the identification of new potential vaccine candidates and in the targeting of specific immune responses, give encouraging vaccination perspectives. Here, we review past and current knowledge on A. pleuropneumoniae vaccines as well as the newly available genomic tools and vaccination strategies that could be useful in the design of an efficient vaccine against A. pleuropneumoniae infection.


Subject(s)
Actinobacillus Infections/veterinary , Actinobacillus pleuropneumoniae/immunology , Bacterial Vaccines/immunology , Swine Diseases/prevention & control , Actinobacillus Infections/prevention & control , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Serotyping/veterinary , Swine , Vaccination/veterinary , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Virulence
12.
J Biol Chem ; 280(47): 39104-14, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16188878

ABSTRACT

We reported previously that the core oligosaccharide region of the lipopolysaccharide (LPS) is essential for optimal adhesion of Actinobacillus pleuropneumoniae, an important swine pathogen, to respiratory tract cells. Rough LPS and core LPS mutants of A. pleuropneumoniae serotype 1 were generated by using a mini-Tn10 transposon mutagenesis system. Here we performed a structural analysis of the oligosaccharide region of three core LPS mutants that still produce the same O-antigen by using methylation analyses and mass spectrometry. We also performed a kinetic study of proinflammatory cytokines production such as interleukin (IL)-6, tumor necrosis factor-alpha, IL1-beta, MCP-1, and IL8 by LPS-stimulated porcine alveolar macrophages, which showed that purified LPS of the parent strain, the rough LPS and core LPS mutants, had the same ability to stimulate the production of cytokines. Most interestingly, an in vitro susceptibility test of these LPS mutants to antimicrobial peptides showed that the three core LPS mutants were more susceptible to cationic peptides than both the rough LPS mutant and the wild type parent strain. Furthermore, experimental pig infections with these mutants revealed that the galactose (Gal I) and d,d-heptose (Hep IV) residues present in the outer core of A. pleuropneumoniae serotype 1 LPS are important for adhesion and overall virulence in the natural host, whereas deletion of the terminal GalNAc-Gal II disaccharide had no effect. Our data suggest that an intact core-lipid A region is required for optimal protection of A. pleuropneumoniae against cationic peptides and that deletion of specific residues in the outer LPS core results in the attenuation of the virulence of A. pleuropneumoniae serotype 1.


Subject(s)
Actinobacillus pleuropneumoniae/chemistry , Actinobacillus pleuropneumoniae/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/toxicity , Actinobacillus pleuropneumoniae/classification , Actinobacillus pleuropneumoniae/genetics , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Base Sequence , Carbohydrate Sequence , Cytokines/biosynthesis , Cytokines/genetics , DNA, Complementary/genetics , In Vitro Techniques , Inflammation Mediators/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Molecular Sequence Data , Molecular Structure , Mutagenesis , O Antigens/chemistry , O Antigens/genetics , O Antigens/toxicity , Serotyping , Sus scrofa , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...