Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 914: 148417, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38555003

ABSTRACT

This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.


Subject(s)
Cajanus , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Cajanus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Promoter Regions, Genetic , Genome, Plant , Lignin/biosynthesis , Lignin/metabolism , Lignin/genetics , Herbivory
2.
BMC Genomics ; 24(1): 526, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37674140

ABSTRACT

To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.


Subject(s)
MicroRNAs , Oryza , Droughts , Oryza/genetics , Quantitative Trait Loci , Drought Resistance , MicroRNAs/genetics
3.
Plants (Basel) ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37111920

ABSTRACT

In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance. In the present study, a database, RiceMetaSys-H, comprising 4227 heat stress-responsive genes (HRGs), was created using seven publicly available microarray datasets. This included in-house-generated microarray datasets of Nagina 22 (N22) and IR64 subjected to 8 days of heat stress. The database has provisions for searching the HRGs through genotypes, growth stages, tissues, and physical intervals in the genome, as well as Locus IDs, which provide complete information on the HRGs with their annotations and fold changes, along with the experimental material used for the analysis. The up-regulation of genes involved in hormone biosynthesis and signalling, sugar metabolism, carbon fixation, and the ROS pathway were found to be the key mechanisms of enhanced heat tolerance. Integrating variant and expression analysis, the database was used for the dissection of the major effect of QTLs on chromosomes 4, 5, and 9 from the IR64/N22 mapping population. Out of the 18, 54, and 62 genes in these three QTLs, 5, 15, and 12 genes harboured non-synonymous substitutions. Fifty-seven interacting genes of the selected QTLs were identified by a network analysis of the HRGs in the QTL regions. Variant analysis revealed that the proportion of unique amino acid substitutions (between N22/IR64) in the QTL-specific genes was much higher than the common substitutions, i.e., 2.58:0.88 (2.93-fold), compared to the network genes at a 0.88:0.67 (1.313-fold) ratio. An expression analysis of these 89 genes showed 43 DEGs between IR64/N22. By integrating the expression profiles, allelic variations, and the database, four robust candidates (LOC_Os05g43870, LOC_Os09g27830, LOC_Os09g27650, andLOC_Os09g28000) for enhanced heat stress tolerance were identified. The database thus developed in rice can be used in breeding to combat high-temperature stress.

4.
3 Biotech ; 12(6): 127, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35573803

ABSTRACT

A wealth of microarray and RNA-seq data for studying abiotic stress tolerance in rice exists but only limited studies have been carried out on multiple stress-tolerance responses and mechanisms. In this study, we identified 6657 abiotic stress-responsive genes pertaining to drought, salinity and heat stresses from the seedling stage microarray data of 83 samples and used them to perform unweighted network analysis and to identify key hub genes or master regulators for multiple abiotic stress tolerance. Of the total 55 modules identified from the analysis, the top 10 modules with 8-61 nodes comprised 239 genes. From these 10 modules, 10 genes common to all the three stresses were selected. Further, based on the centrality properties and highly dense interactions, we identified 7 intra-modular hub genes leading to a total of 17 potential candidate genes. Out of these 17 genes, 15 were validated by expression analysis using a panel of 4 test genotypes and a pair of standard check genotypes for each abiotic stress response. Interestingly, all the 15 genes showed upregulation under all stresses and in all the genotypes, suggesting that they could be representing some of the core abiotic stress-responsive genes. More pertinently, eight of the genes were found to be co-localized with the stress-tolerance QTL regions. Thus, in conclusion, our study not only provided an effective approach for studying abiotic stress tolerance in rice, but also identified major candidate genes which could be further validated by functional genomics for abiotic stress tolerance. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03182-7.

5.
Physiol Mol Biol Plants ; 27(3): 523-534, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33854281

ABSTRACT

Deeper Rooting 1 (DRO1) gene identified from a major QTL on chromosome 9 increases the root growth angle (RGA) and thus facilitates survival under drought and hence is an excellent candidate for rice improvement. Twenty-four major Indian upland and lowland genotypes including the 'yield under drought' (DTY) QTL donors were subjected to allele mining of DRO1 (3058 bp) using four pairs of overlapping primers. A total of 216 and 52 SNPs were identified across all genotypes in the gene and coding region (756 bp) respectively with transversions 3.6 fold more common than transitions in the gene and 2.5 times in the CDS. In 251 amino acid long protein, substitutions were found in 19 positions, wherein change in position 92 was the most frequent. Based on allele mining, the 24 genotypes can be classified into 16 primary structure variants ranging from complete functional allele (Satti, IR36 and DTY 3.1 donor, IR81896-B-B-195) to truncated non-functional alleles in PMK2, IR64, IR20 and Swarna. All the DTY donors, other than IR81896-B-B-195, and most of the upland drought tolerant cultivars (Nagina 22, Vandana and Dhagaddeshi) had accumulated 6-19 SNPs and 4-8 amino acid substitutions resulting in substantial differences in their protein structure. The expression analysis revealed that all the genotypes showed upregulation under drought stress though the degree of upregulation varied among genotypes. The information on structural variations in DRO1 gene will be very useful for the breeders, especially in the light of recent breeding programmes on improving drought tolerance using several DTY donors and upland accessions. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12298-021-00950-2).

6.
Plants (Basel) ; 8(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561513

ABSTRACT

Three Ethyl methansulphonate (EMS)-induced stay-green mutants (SGM-1, SGM-2 and SGM-3) and their wild-type (WT), were tested for their Stay-Green (SG) and drought tolerance nature as the relation between these two attributes is not yet established in rice. In the dark induced senescence assay, SGM-3 showed delayed senescence while SGM-1 and SGM-2 showed complete lack of senescence. Mutants showed stable transcript abundance over time, for 15 candidate genes (CGs) associated with senescence, compared to the WT. SGM-3 however showed moderately increasing transcript abundance over time for ATG6a, ATG4a, NYC1, NOL and NYC3. Only SGM-3 performed better than the WT for yield and harvest index under well irrigated as well as drought conditions, though all the mutants showed better performance for other agronomic traits under both the conditions and ascorbate peroxidase activity under drought. Thus, SG trait showed positive correlation with drought tolerance though only SGM-3 could convert this into higher harvest index. Sequence analysis of 80 senescence-associated genes including the 15 CGs showed non-synonymous mutations in four and six genes in SGM-1 and SGM-2 respectively, while no SNPs were found in SGM-3. Analysis of the earlier reported Quantitative Trait Loci (QTL) regions in SGM-3 revealed negligible variations from WT, suggesting it to be a novel SG mutant.

7.
Front Plant Sci ; 9: 1179, 2018.
Article in English | MEDLINE | ID: mdl-30233603

ABSTRACT

The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1-2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22).

8.
Rice (N Y) ; 10(1): 10, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28378144

ABSTRACT

BACKGROUND: Increased water and labour scarcity in major rice growing areas warrants a shift towards direct seeded rice cultivation under which management of weeds is a major issue. Use of broad spectrum non-selective herbicides is an efficient means to manage weeds. Availability of rice genotypes with complete tolerance against broad-spectrum non-selective herbicides is a pre-requisite for advocating use of such herbicides. In the present study, we developed an EMS induced rice mutant, 'HTM-N22', exhibiting tolerance to a broad spectrum herbicide, 'Imazethapyr', and identified the mutations imparting tolerance to the herbicide. RESULTS: We identified a stable and true breeding rice mutant, HTM-N22 (HTM), tolerant to herbicide, Imazethapyr, from an EMS-mutagenized population of approximately 100,000 M2 plants of an upland rice variety, Nagina 22 (N22). Analysis of inheritance of herbicide tolerance in a cross between Pusa 1656-10-61/HTM showed that this trait is governed by a single dominant gene. To identify the causal gene for Imazethapyr tolerance, bulked segregant analysis (BSA) was followed using microsatellite markers flanking the three putative candidate genes viz., an Acetolactate Synthase (ALS) on chromosome 6 and two Acetohydroxy Acid Synthase (AHAS) genes, one on chromosomes 2 and another on chromosome 4. RM 6844 on chromosome 2 located 0.16 Mbp upstream of AHAS (LOC_Os02g30630) was found to co-segregate with herbicide tolerance. Cloning and sequencing of AHAS (LOC_Os02g30630) from the wild type, N22 and the mutant HTM and their comparison with reference Nipponbare sequence revealed several Single Nucleotide Polymorphisms (SNPs) in the mutant, of which eight resulted in non-synonymous mutations. Three of the eight amino acid substitutions were identical to Nipponbare and hence were not considered as causal changes. Of the five putative candidate SNPs, four were novel (at positions 30, 50, 81 and 152) while the remaining one, S627D was a previously reported mutant, known to result in Imidazolinone tolerance in rice. Of the novel ones, G152E was found to alter the hydrophobicty and abolish an N myristoylation site in the HTM compared to the WT, from reference based modeling and motif prediction studies. CONCLUSIONS: A novel mutant tolerant to the herbicide "Imazethapyr" was developed and characterized for genetic, sequence and protein level variations. This is a HTM in rice without any IPR (Intellectual Property Rights) infringements and hence can be used in rice breeding as a novel genetic stock by the public funded organizations in the country and elsewhere.

SELECTION OF CITATIONS
SEARCH DETAIL
...