Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Physiol Rep ; 12(9): e16033, 2024 May.
Article in English | MEDLINE | ID: mdl-38740564

ABSTRACT

The pathophysiology behind sodium retention in heart failure with preserved ejection fraction (HFpEF) remains poorly understood. We hypothesized that patients with HFpEF have impaired natriuresis and diuresis in response to volume expansion and diuretic challenge, which is associated with renal hypo-responsiveness to endogenous natriuretic peptides. Nine HFpEF patients and five controls received saline infusion (0.25 mL/kg/min for 60 min) followed by intravenous furosemide (20 mg or home dose) 2 h after the infusion. Blood and urine samples were collected at baseline, 2 h after saline infusion, and 2 h after furosemide administration; urinary volumes were recorded. The urinary cyclic guanosine monophosphate (ucGMP)/plasma B-type NP (BNP) ratio was calculated as a measure of renal response to endogenous BNP. Wilcoxon rank-sum test was used to compare the groups. Compared to controls, HFpEF patients had reduced urine output (2480 vs.3541 mL; p = 0.028), lower urinary sodium excretion over 2 h after saline infusion (the percentage of infused sodium excreted 12% vs. 47%; p = 0.003), and a lower baseline ucGMP/plasma BNP ratio (0.7 vs. 7.3 (pmol/mL)/(mg/dL)/(pg/mL); p = 0.014). Patients with HFpEF had impaired natriuretic response to intravenous saline and furosemide administration and lower baseline ucGMP/plasma BNP ratios indicating renal hypo-responsiveness to NPs.


Subject(s)
Furosemide , Heart Failure , Kidney , Natriuretic Peptide, Brain , Sodium , Stroke Volume , Humans , Heart Failure/physiopathology , Heart Failure/metabolism , Male , Female , Aged , Pilot Projects , Furosemide/pharmacology , Furosemide/administration & dosage , Sodium/metabolism , Sodium/urine , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Kidney/metabolism , Kidney/physiopathology , Kidney/drug effects , Middle Aged , Natriuresis/drug effects , Diuretics/pharmacology , Diuretics/administration & dosage , Cyclic GMP/metabolism , Cyclic GMP/urine , Aged, 80 and over
2.
J Am Soc Nephrol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652562

ABSTRACT

In response to decreasing numbers of individuals entering into nephrology fellowships, the American Society of Nephrology launched Kidney TREKS (Tutored Research and Education for Kidney Scholars) to stimulate interest in nephrology among medical students, graduate students, and postdoctoral fellows. The program combines a one-week intensive exposure to kidney physiology with a longitudinal mentorship program at the participants' home institutions. Ten years in, an analysis was conducted to assess its effectiveness. We surveyed participants to assess their opinions regarding nephrology before and after the course and followed them longitudinally to determine their career choices. TREKS applicants who were not selected to participate were used as a comparison group. 381 people participated in the program and 242 completed the survey. After TREKS, both medical students and graduate students showed increased interest in nephrology, with rank scores of 5.6±0.2 pre- to 7.5±0.1 post-course for medical students (mean ± standard deviation, n=189, p=0.001) and 7.3±0.3 to 8.7±0.3 (n=53, p=0.001) for graduate students. In long term follow-up, TREKS medical students chose a nephrology pipeline residency at a higher rate than medical students overall (57% vs. 31%, p=0.01) and TREKS applicants who did not participate (47% vs. 31%, p=0.04). Nephrology fellowship rates for these groups exceeded the general population but did not significantly differ between TREKS participants and applicants. PhD students and postdoctoral TREKS participants had a higher rate of participating in nephrology research compared to TREKS applicants (66% vs. 30%, p=0.01). In summary, the ASN Kidney TREKS program has demonstrated that it can improve interest in nephrology in the short term and increase the number of individuals going into nephrology careers. This long-term effect is most evident in PhD students and postdoctoral participants. Further study is needed to assess the impact of TREKS on enrollment in nephrology fellowship programs.

3.
Adv Kidney Dis Health ; 30(2): 124-136, 2023 03.
Article in English | MEDLINE | ID: mdl-36868728

ABSTRACT

The kidneys play a critical role in maintaining total body sodium (Na+) balance across a wide range of dietary intake, accomplished by a concerted effort involving multiple Na+ transporters along the nephron. Furthermore, nephron Na+ reabsorption and urinary Na+ excretion are closely linked to renal blood flow and glomerular filtration such that perturbations in either of them can modify Na+ transport along the nephron, ultimately resulting in hypertension and other Na+-retentive states. In this article, we provide a brief physiological overview of nephron Na+ transport and illustrate clinical syndromes and therapeutic agents that affect Na+ transporter function. We highlight recent advances in kidney Na+ transport, particularly the role of immune cells, lymphatics, and interstitial Na+ in regulating Na+ reabsorption, the emergence of potassium (K+) as a regulator of Na+ transport, and the evolution of the nephron to modulate Na+ transport.


Subject(s)
Hypertension , Nephrons , Humans , Kidney , Renal Circulation , Membrane Transport Proteins , Sodium
6.
Acta Physiol (Oxf) ; 237(1): e13899, 2023 01.
Article in English | MEDLINE | ID: mdl-36264268

ABSTRACT

AIM: The kaliuretic action of the renin-angiotensin-aldosterone system (RAAS) is well established as highlighted by hyperkalemia side effect of RAAS inhibitors but such action is usually ascribed to systemic RAAS. The present study addresses the involvement of intrarenal RAAS in K+ homeostasis with emphasis on locally generated renin within the collecting duct (CD). METHODS: Wild-type (Floxed) and CD-specific deletion of renin (CD renin KO) mice were treated for 7 days with a high K+ (HK) diet to investigate the role of CD renin in kaliuresis regulation and further define the underlying mechanism with emphasis on analysis of intrarenal aldosterone biosynthesis. RESULTS: In floxed mice, renin levels were elevated in the renal medulla and urine following a 1-week HK diet, indicating activation of the intrarenal renin. CD renin KO mice had blunted HK-induced intrarenal renin response and developed impaired kaliuresis and elevated plasma K+ level (4.45 ± 0.14 vs. 3.89 ± 0.04 mM, p < 0.01). In parallel, HK-induced intrarenal aldosterone and CYP11B2 expression along with expression of renal outer medullary K+ channel (ROMK), calcium-activated potassium channel subunit alpha-1 (α-BK), α-Na+ -K+ -ATPase, and epithelial sodium channel (ß-ENaC and cleaved-γ-ENaC) expression were all significantly blunted in CD renin KO mice in contrast to the unaltered responses of plasma aldosterone and adrenal CYP11B2. CONCLUSION: Taken together, these results support a kaliuretic action of CD renin during HK intake.


Subject(s)
Renin , Water-Electrolyte Imbalance , Mice , Animals , Renin/metabolism , Aldosterone/metabolism , Cytochrome P-450 CYP11B2/metabolism , Potassium/metabolism , Homeostasis , Epithelial Sodium Channels/metabolism , Mice, Knockout
7.
Pharmacol Rev ; 74(3): 462-505, 2022 07.
Article in English | MEDLINE | ID: mdl-35710133

ABSTRACT

The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.


Subject(s)
Angiotensinogen , Cardiovascular Diseases , Female , Humans , Male , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Angiotensinogen/metabolism , Cardiovascular Diseases/metabolism , Drug Delivery Systems , Kidney/blood supply , Kidney/metabolism , Renin/metabolism , Renin-Angiotensin System , Sodium-Glucose Transporter 2 Inhibitors/metabolism
8.
Can J Physiol Pharmacol ; 100(8): 763-771, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35531905

ABSTRACT

Two recent clinical trials, using sodium glucose cotransporter (SGLT2) or endothelin-A receptor (ET-A) blocker, reported the first efficacious treatments in 18 years to slow progression of diabetic kidney disease (DKD). We hypothesized that combined inhibition of SGLT2 and ET-A receptor may confer greater protection against renal injury than either agent alone. Uninephrectomized male db/db mice were randomized to four groups: vehicle, SGLT2 inhibitor (dapagliflozin (dapa), 1 mg/kg/day), ET-A blocker (atrasentan (atra), 5 mg/kg/day), or dual treatment from 10 weeks until 22 weeks of age. At 10 weeks of age, no differences were observed in body weight, blood glucose or urinary albumin excretion among the four groups. At 16 and 22 weeks of age, body weight was lower and blood glucose levels higher in the vehicle and atra groups compared with dapa- and dual-treated groups. No notable differences were observed among the four groups in urinary albumin excretion at weeks 16 and 22. Histological analysis showed mild glomerulosclerosis and tubular injury (<5%) in all four groups with reduced glomerulosclerosis in the dual treatment group compared with vehicle. Individual or combined treatment with an SGLT2 inhibitor and (or) an ET-A antagonist did not confer renoprotective effects in this model.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Animals , Male , Mice , Albumins/analysis , Albumins/pharmacology , Albumins/therapeutic use , Benzhydryl Compounds/pharmacology , Blood Glucose/analysis , Body Weight , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/prevention & control , Disease Models, Animal , Glucose/pharmacology , Kidney , Receptor, Endothelin A , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
9.
FASEB J ; 36(5): e22275, 2022 05.
Article in English | MEDLINE | ID: mdl-35349181

ABSTRACT

The collecting duct is a highly adaptive terminal part of the nephron, which is essential for maintaining systemic homeostasis. Principal and intercalated cells perform different physiological tasks and exhibit distinctive morphology. However, acid-secreting A- and base secreting B-type of intercalated cells cannot be easily separated in functional studies. We used BCECF-sensitive intracellular pH (pHi ) measurements in split-opened collecting ducts followed by immunofluorescent microscopy in WT and intercalated cell-specific ClC-K2-/- mice to demonstrate that ClC-K2 inhibition enables to distinguish signals from A- and B-intercalated cells. We show that ClC-K2 Cl- channel is expressed on the basolateral side of intercalated cells, where it governs Cl- -dependent H+ /HCO3- transport. ClC-K2 blocker, NPPB, caused acidification or alkalization in different subpopulations of intercalated cells in WT but not ClC-K2-/- mice. Immunofluorescent assessment of the same collecting ducts revealed that NPPB increased pHi in AE1-positive A-type and decreased pHi in pendrin-positive B-type of intercalated cells. Induction of metabolic acidosis led to a significantly augmented abundance and H+ secretion in A-type and decreased proton transport in B-type of intercalated cells, whereas metabolic alkalosis caused the opposite changes in intercalated cell function, but did not substantially change their relative abundance. Overall, we show that inhibition of ClC-K2 can be employed to discriminate between A- and B-type of intercalated cells in split-opened collecting duct preparations. We further demonstrate that this method can be used to independently monitor changes in the functional status and abundance of A- and B-type in response to systemic acid/base stimuli.


Subject(s)
Acidosis , Kidney Tubules, Collecting , Acidosis/metabolism , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Kidney Tubules, Collecting/metabolism , Mice , Nephrons/metabolism , Sulfate Transporters/metabolism
10.
J Am Soc Nephrol ; 32(7): 1666-1681, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33952630

ABSTRACT

BACKGROUND: Identification of target antigens PLA2R, THSD7A, NELL1, or Semaphorin-3B can explain the majority of cases of primary membranous nephropathy (MN). However, target antigens remain unidentified in 15%-20% of patients. METHODS: A multipronged approach, using traditional and modern technologies, converged on a novel target antigen, and capitalized on the temporal variation in autoantibody titer for biomarker discovery. Immunoblotting of human glomerular proteins followed by differential immunoprecipitation and mass spectrometric analysis was complemented by laser-capture microdissection followed by mass spectrometry, elution of immune complexes from renal biopsy specimen tissue, and autoimmune profiling on a protein fragment microarray. RESULTS: These approaches identified serine protease HTRA1 as a novel podocyte antigen in a subset of patients with primary MN. Sera from two patients reacted by immunoblotting with a 51-kD protein within glomerular extract and with recombinant human HTRA1, under reducing and nonreducing conditions. Longitudinal serum samples from these patients seemed to correlate with clinical disease activity. As in PLA2R- and THSD7A- associated MN, anti-HTRA1 antibodies were predominantly IgG4, suggesting a primary etiology. Analysis of sera collected during active disease versus remission on protein fragment microarrays detected significantly higher titers of anti-HTRA1 antibody in active disease. HTRA1 was specifically detected within immune deposits of HTRA1-associated MN in 14 patients identified among three cohorts. Screening of 118 "quadruple-negative" (PLA2R-, THSD7A-, NELL1-, EXT2-negative) patients in a large repository of MN biopsy specimens revealed a prevalence of 4.2%. CONCLUSIONS: Conventional and more modern techniques converged to identify serine protease HTRA1 as a target antigen in MN.

12.
Trends Endocrinol Metab ; 32(6): 333-334, 2021 06.
Article in English | MEDLINE | ID: mdl-33773899

ABSTRACT

Recent research by Miguel et al. and Dhillon et al. reveals associations between impaired lipid metabolism and kidney fibrosis. Kidney tubule fatty acid oxidation (FAO) gain-of-function in mouse models of kidney disease stimulated cellular respiration, mitochondrial dynamics, and tubular epithelial cell (TEC) differentiation, while upregulation of FAO in kidney tubules provided protection from kidney fibrosis and functional decline.


Subject(s)
Disease Models, Animal , Kidney Diseases , Lipid Metabolism , Animals , Fibrosis , Gain of Function Mutation , Mice
13.
Am J Nephrol ; 52(2): 141-151, 2021.
Article in English | MEDLINE | ID: mdl-33735863

ABSTRACT

INTRODUCTION: Prorenin, a precursor of renin, and renin play an important role in regulation of the renin-angiotensin system. More recently, receptor-bound prorenin has been shown to activate intracellular signaling pathways that mediate fibrosis, independent of angiotensin II. Prorenin and renin may thus be of physiologic significance in CKD, but their plasma concentrations have not been well characterized in CKD. METHODS: We evaluated distribution and longitudinal changes of prorenin and renin concentrations in the plasma samples collected at follow-up years 1, 2, 3, and 5 of the Chronic Renal Insufficiency Cohort (CRIC) study, an ongoing longitudinal observational study of 3,939 adults with CKD. Descriptive statistics and multivariable regression of log-transformed values were used to describe cross-sectional and longitudinal variation and associations with participant characteristics. RESULTS: A total of 3,361 CRIC participants had plasma available for analysis at year 1. The mean age (±standard deviation, SD) was 59 ± 11 years, and the mean estimated glomerular filtration rate (eGFR, ± SD) was 43 ± 17 mL/min per 1.73 m2. Median (interquartile range) values of plasma prorenin and renin at study entry were 4.4 (2.1, 8.8) ng/mL and 2.0 (0.8, 5.9) ng/dL, respectively. Prorenin and renin were positively correlated (Spearman correlation 0.51, p < 0.001) with each other. Women and non-Hispanic blacks had lower prorenin and renin values at year 1. Diabetes, lower eGFR, and use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, statins, and diuretics were associated with higher levels. Prorenin and renin decreased by a mean of 2 and 5% per year, respectively. Non-Hispanic black race and eGFR <30 mL/min/1.73 m2 at year 1 predicted a steeper decrease in prorenin and renin over time. In addition, each increase in urinary sodium excretion by 2 SDs at year 1 increased prorenin and renin levels by 4 and 5% per year, respectively. DISCUSSION/CONCLUSIONS: The cross-sectional clinical factors associated with prorenin and renin values were similar. Overall, both plasma prorenin and renin concentrations decreased over the years, particularly in those with severe CKD at study entry.


Subject(s)
Renal Insufficiency, Chronic/blood , Renin/blood , Adult , Black or African American , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Cross-Sectional Studies , Diabetes Mellitus/blood , Female , Glomerular Filtration Rate , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Longitudinal Studies , Male , Middle Aged , Race Factors , Renal Insufficiency, Chronic/physiopathology , Sex Factors , Sodium/urine , Time Factors
14.
Am J Nephrol ; 52(3): 239-249, 2021.
Article in English | MEDLINE | ID: mdl-33774617

ABSTRACT

INTRODUCTION: Diabetes is the most common cause of chronic kidney disease (CKD). For patients with diabetes and CKD, the underlying cause of their kidney disease is often assumed to be a consequence of their diabetes. Without histopathological confirmation, however, the underlying cause of their disease is unclear. Recent studies have shown that next-generation sequencing (NGS) provides a promising avenue toward uncovering and establishing precise genetic diagnoses in various forms of kidney disease. METHODS: Here, we set out to investigate the genetic basis of disease in nondiabetic kidney disease (NDKD) and diabetic kidney disease (DKD) patients by performing targeted NGS using a custom panel comprising 345 kidney disease-related genes. RESULTS: Our analysis identified rare diagnostic variants based on ACMG-AMP guidelines that were consistent with the clinical diagnosis of 19% of the NDKD patients included in this study. Similarly, 22% of DKD patients were found to carry rare pathogenic/likely pathogenic variants in kidney disease-related genes included on our panel. Genetic variants suggestive of NDKD were detected in 3% of the diabetic patients included in this study. DISCUSSION/CONCLUSION: Our findings suggest that rare variants in kidney disease-related genes in a diabetic background may play a role in the pathogenesis of DKD and NDKD in patients with diabetes.


Subject(s)
Diabetic Nephropathies/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Diabetic Nephropathies/classification , Female , Humans , Male , Middle Aged
15.
J Am Soc Nephrol ; 31(6): 1243-1254, 2020 06.
Article in English | MEDLINE | ID: mdl-32300065

ABSTRACT

BACKGROUND: Hypertension often occurs before renal function deteriorates in autosomal dominant polycystic kidney disease (ADPKD). It is unknown whether the Pkd1 gene product polycystin-1-the predominant causal factor in ADPKD-itself contributes to ADPKD hypertension independent of cystogenesis. METHODS: We induced nephron-specific disruption of the Pkd1 gene in 3-month-old mice and examined them at 4-5 months of age. RESULTS: Kidneys from the Pkd1 knockout mice showed no apparent renal cysts, tubule dilation, or increased cell proliferation. Compared with control mice, Pkd1 knockout mice exhibited reduced arterial pressure during high salt intake; this associated with an increased natriuretic, diuretic, and kaliuretic response during the first 2-3 days of salt loading. The lower arterial pressure and enhanced natriuresis during high salt loading in Pkd1 knockout mice were associated with lower urinary nitrite/nitrate excretion and markedly increased urinary PGE2 excretion, whereas GFR, plasma renin concentration, and urinary endothelin-1 excretion were similar between knockout and control mice. Kidney cyclooxygenase-2 protein levels were increased in Pkd1 knockout mice during high salt intake; administration of NS-398, a selective cyclooxygenase-2 inhibitor, abolished the arterial pressure difference between the knockout and control mice during high salt intake. Total kidney Na+/K+/2Cl- cotransporter isoform 2 (NKCC2) levels were greatly reduced in Pkd1 knockout mice fed a high salt diet compared with controls. CONCLUSIONS: These studies suggest that nephron polycystin-1 deficiency does not itself contribute to ADPKD hypertension and that it may, in fact, exert a relative salt-wasting effect. The work seems to comprise the first in vivo studies to describe a potential physiologic role for nephron polycystin-1 in the absence of cysts, tubule dilation, or enhanced cell proliferation.


Subject(s)
Blood Pressure/physiology , Cyclooxygenase 2/physiology , Nephrons/physiology , Polycystic Kidney, Autosomal Dominant/etiology , TRPP Cation Channels/physiology , Animals , Dinoprostone/urine , Glomerular Filtration Rate , Mice , Mice, Knockout , Solute Carrier Family 12, Member 1/physiology
16.
JCI Insight ; 4(7)2019 04 04.
Article in English | MEDLINE | ID: mdl-30944256

ABSTRACT

The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease-derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule-specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Tubules, Collecting/metabolism , Proton-Translocating ATPases/metabolism , Receptors, Cell Surface/metabolism , Receptors, Vasopressin/metabolism , Animals , Antidiuretic Hormone Receptor Antagonists/pharmacology , Aquaporin 2/genetics , Cells, Cultured , Epithelial Cells , Kidney Concentrating Ability/drug effects , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Male , Mice , Mice, Knockout , Models, Animal , Peptide Fragments/pharmacology , Primary Cell Culture , Proprotein Convertases/antagonists & inhibitors , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Pyrrolidines/pharmacology , Rats , Receptors, Vasopressin/genetics , Renin/metabolism , Renin/pharmacology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Urothelium/cytology , Vacuolar Proton-Translocating ATPases
17.
Kidney Int ; 95(5): 1041-1052, 2019 05.
Article in English | MEDLINE | ID: mdl-30819554

ABSTRACT

The (pro)renin receptor (PRR) is a multifunctional protein that is expressed in multiple organs. Binding of prorenin/renin to the PRR activates angiotensin II-dependent and angiotensin II-independent pathways. The PRR is also involved in autophagy and Wnt/ß catenin signaling, functions that are not contingent on prorenin binding. Emerging evidence suggests that the PRR plays an important role in blood pressure regulation and glucose and lipid metabolism. Herein, we review PRR function in health and disease, with particular emphasis on hypertension and the metabolic syndrome.


Subject(s)
Hypertension/etiology , Metabolic Syndrome/etiology , Proton-Translocating ATPases/metabolism , Receptors, Cell Surface/metabolism , Renin/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Angiotensin II/metabolism , Animals , Autophagy/physiology , Blood Pressure/physiology , Disease Models, Animal , Glucose/metabolism , Humans , Hypertension/physiopathology , Lipid Metabolism/physiology , Metabolic Syndrome/physiopathology , Renin-Angiotensin System/physiology , Wnt Signaling Pathway/physiology
19.
Am J Physiol Renal Physiol ; 315(3): F607-F617, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29790390

ABSTRACT

The collecting duct is the predominant nephron site of prorenin and prorenin receptor (PRR) expression. We previously demonstrated that the collecting duct PRR regulates epithelial Na+ channel (ENaC) activity and water transport; however, which cell type is involved remains unclear. Herein, we examined the effects of principal cell (PC) or intercalated cell (IC) PRR deletion on renal Na+ and water handling. PC or IC PRR knockout (KO) mice were obtained by crossing floxed PRR mice with mice harboring Cre recombinase under the control of the AQP2 or B1 subunit of the H+ ATPase promoters, respectively. PC KO mice had reduced renal medullary ENaC-α abundance and increased urinary Na+ losses on a low-Na+ diet compared with controls. Conversely, IC KO mice had no apparent differences in Na+ balance or ENaC abundance compared with controls. Acute treatment with prorenin increased ENaC channel number and open probability in acutely isolated cortical collecting ducts from control and IC PRR KO, but not PC PRR KO, mice. Furthermore, compared with controls, PC KO, but not IC KO mice, had increased urine volume, reduced urine osmolality, and reduced abundance of renal medullary AQP2. Taken together, these findings indicate that PC, but not IC, PRR modulates ENaC activity, urinary Na+ excretion, and water transport.


Subject(s)
Body Water/metabolism , Kidney Tubules, Collecting/metabolism , Natriuresis , Proton-Translocating ATPases/metabolism , Receptors, Cell Surface/metabolism , Sodium/urine , Water-Electrolyte Balance , Animals , Aquaporin 2/genetics , Epithelial Sodium Channels/metabolism , Female , Genotype , Kidney Tubules, Collecting/cytology , Male , Mice, Inbred C57BL , Mice, Knockout , Osmolar Concentration , Phenotype , Promoter Regions, Genetic , Proton-Translocating ATPases/deficiency , Proton-Translocating ATPases/genetics , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Renal Elimination , Renal Reabsorption , Vacuolar Proton-Translocating ATPases/genetics
20.
Physiol Rep ; 5(5)2017 Mar.
Article in English | MEDLINE | ID: mdl-28270594

ABSTRACT

Recent studies suggest that aldosterone-mediated sulfenic acid modification of the endothelin B receptor (ETB) promotes renal injury in an ischemia/reperfusion model through reduced ETB-stimulated nitric oxide production. Similarly, aldosterone inactivation of ETB signaling promotes pulmonary artery hypertension. Consequently, we asked whether aldosterone inhibits collecting duct ETB signaling; this could promote fluid retention since CD ETB exerts natriuretic and diuretic effects. A mouse inner medullary collecting duct cell line (IMCD3) was treated with aldosterone for 48 h followed by sarafotoxin-6c, an ETB-selective agonist, and extracellular signal-related kinase 1/2 (ERK) phosphorylation assessed. S6c increased the phospho/total-ERK ratio similarly in control and aldosterone-treated cells (aldosterone alone increased phospho/total-ERK). Since cultured IMCD cell lines lack ETB inhibited AVP signaling, the effect of S6c on AVP-stimulated cAMP in acutely isolated IMCD was assessed. Rats (have much higher CD ETB expression than mice) were exposed to 3 days of a normal or low Na+ diet, or low Na+ diet + desoxycorticosterone acetate. S6c inhibited AVP-stimulated cAMP in rat IMCD by the same degree in the high mineralocorticoid groups compared to controls. Finally, S6c-stimulated cGMP accumulation in cultured IMCD, or S6c-stimulated nitric oxide or cGMP in acutely isolated IMCD, was not affected by prior aldosterone exposure. These findings provide evidence that aldosterone does not modify ETB effects on ERK phosphorylation, AVP-dependent cAMP inhibition, or NO/cGMP accumulation in the IMCD Thus, while aldosterone can inhibit endothelial cell ETB activity to promote hypertension and injury, this response does not appear to occur in the IMCD.


Subject(s)
Aldosterone/pharmacology , Kidney Medulla/drug effects , Kidney Tubules, Collecting/drug effects , MAP Kinase Signaling System/drug effects , Receptor, Endothelin B/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Kidney Medulla/cytology , Kidney Medulla/metabolism , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Mice , Nitric Oxide/metabolism , Phosphorylation/drug effects , Viper Venoms/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...