Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Electrophoresis ; 43(11): 1203-1214, 2022 06.
Article in English | MEDLINE | ID: mdl-35285965

ABSTRACT

Multiple spotting due to protein speciation might increase a protein's chance of being captured in a random selection of 2-DE spots. We tested this expectation in new (PXD015649) and previously published 2-DE/MS data of porcine and human tissues. For comparison, we included bottom-up proteomics studies (BU-LC/MS) of corresponding biological materials. Analyses of altogether ten datasets proposed that amino acid modification fosters multispotting in 2-DE. Thus, the number of 2-DE spots containing a particular protein more tightly associated with a peptide diversity measure accounting for amino acid modification than with an alternative one disregarding it. Furthermore, every 11th amino acid was a post-translational modification candidate site in 2-DE/MS proteins, whereas in BU-LC/MS proteins this was merely the case in every 21st amino acid. Alternative splicing might contribute to multispotting, since genes encoding 2-DE/MS proteins were found to have on average about 0.3 more transcript variants than their counterparts from BU-LC/MS studies. Correspondingly, resolution completeness as estimated from the representation of transcript variant-rich genes was higher in 2-DE/MS than BU-LC/MS datasets. These findings suggest that the ability to resolve proteomes down to protein species can lead to enrichment of multispotting proteins in 2-DE/MS. Low sensitivity of stains and MS instruments appears to enhance this effect.


Subject(s)
Proteome , Proteomics , Amino Acids , Animals , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Swine
2.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557247

ABSTRACT

The effect of a cellular prion protein (PrPc) deficiency on neuroenergetics was primarily analyzed via surveying the expression of genes specifically involved in lactate/pyruvate metabolism, such as monocarboxylate transporters (MCT1, MCT2, MCT4). The aim of the present study was to elucidate a potential involvement of PrPc in the regulation of energy metabolism in different brain regions. By using quantitative real-time polymerase chain reaction (qRT-PCR), we observed a marked reduction in MCT1 mRNA expression in the cortex of symptomatic Zürich I Prnp-/- mice, as compared to their wild-type (WT) counterparts. MCT1 downregulation in the cortex was accompanied with significantly decreased expression of the MCT1 functional interplayer, the Na+/K+ ATPase α2 subunit. Conversely, the MCT1 mRNA level was significantly raised in the cerebellum of Prnp-/- vs. WT control group, without a substantial change in the Na+/K+ ATPase α2 subunit expression. To validate the observed mRNA findings, we confirmed the observed change in MCT1 mRNA expression level in the cortex at the protein level. MCT4, highly expressed in tissues that rely on glycolysis as an energy source, exhibited a significant reduction in the hippocampus of Prnp-/- vs. WT mice. The present study demonstrates that a lack of PrPc leads to altered MCT1 and MCT4 mRNA/protein expression in different brain regions of Prnp-/- vs. WT mice. Our findings provide evidence that PrPc might affect the monocarboxylate intercellular transport, which needs to be confirmed in further studies.


Subject(s)
Cerebellum/metabolism , Cerebral Cortex/metabolism , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Prion Proteins/physiology , RNA, Messenger/metabolism , Symporters/metabolism , Animals , Biological Transport , Glycolysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/genetics , RNA, Messenger/genetics , Symporters/genetics
3.
J Diabetes Sci Technol ; 13(3): 514-521, 2019 05.
Article in English | MEDLINE | ID: mdl-30974988

ABSTRACT

BACKGROUND: In recent clinical trials, use of the MyGlucoHealth blood glucose meter (BGM) and electronic diary was associated with an unusual reporting pattern of glycemic data and hypoglycemic events. Therefore, the performance of representative BGMs used by the patients was investigated to assess repeatability, linearity, and hematocrit interference in accordance with regulatory guidelines. METHOD: Ten devices and 6 strip lots were selected using standard randomization and repeatability procedures. Venous heparinized blood was drawn from healthy subjects, immediately aliquoted and adjusted to 5 target blood glucose (BG) ranges for the repeatability and 11 BG concentrations for the linearity tests. For the hematocrit interference test, each sample within 5 target BG ranges was split into 5 aliquots and adjusted to hematocrit levels across the acceptance range. YSI 2300 STAT Plus was used as the laboratory reference method in all experiments. RESULTS: Measurement repeatability or precision was acceptable across the target BG ranges for all devices and strip lots with coefficient of variation (CV) between 3.4-9.7% (mean: 5.7%). Linearity was shown by a correlation coefficient of .991; however, a positive bias was seen for BG <100 mg/dL (86% measurements did not meet ISO15197:2015 acceptance criteria). Significant hematocrit interference (up to 20%) was observed for BG >100 mg/dL (ISO15197:2015 acceptance criteria: ±10%), while the results were acceptable for BG <100 mg/dL. CONCLUSIONS: The BGM met repeatability requirements but demonstrated a significant measurement bias in the low BG range. In addition, it failed the ISO15197:2015 criteria for hematocrit interference.


Subject(s)
Blood Glucose/analysis , Clinical Laboratory Techniques , Diabetes Mellitus/blood , Equipment and Supplies/standards , Internet Access , Artifacts , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/standards , Clinical Laboratory Techniques/methods , Equipment Design , Equipment Failure Analysis , Hematocrit/instrumentation , Hematocrit/methods , Hematocrit/standards , Humans , Linear Models , Reagent Strips/standards , Reproducibility of Results
4.
Front Cell Neurosci ; 11: 212, 2017.
Article in English | MEDLINE | ID: mdl-28798667

ABSTRACT

The transcription repressor FOXP2 is a crucial player in nervous system evolution and development of humans and songbirds. In order to provide an additional insight into its functional role we compared target gene expression levels between human neuroblastoma cells (SH-SY5Y) stably overexpressing FOXP2 cDNA of either humans or the common chimpanzee, Rhesus monkey, and marmoset, respectively. RNA-seq led to identification of 27 genes with differential regulation under the control of human FOXP2, which were previously reported to have FOXP2-driven and/or songbird song-related expression regulation. RT-qPCR and Western blotting indicated differential regulation of additional 13 new target genes in response to overexpression of human FOXP2. These genes may be directly regulated by FOXP2 considering numerous matches of established FOXP2-binding motifs as well as publicly available FOXP2-ChIP-seq reads within their putative promoters. Ontology analysis of the new and reproduced targets, along with their interactors in a network, revealed an enrichment of terms relating to cellular signaling and communication, metabolism and catabolism, cellular migration and differentiation, and expression regulation. Notably, terms including the words "neuron" or "axonogenesis" were also enriched. Complementary literature screening uncovered many connections to human developmental (autism spectrum disease, schizophrenia, Down syndrome, agenesis of corpus callosum, trismus-pseudocamptodactyly, ankyloglossia, facial dysmorphology) and neurodegenerative diseases and disorders (Alzheimer's, Parkinson's, and Huntington's diseases, Lewy body dementia, amyotrophic lateral sclerosis). Links to deafness and dyslexia were detected, too. Such relations existed for single proteins (e.g., DCDC2, NURR1, PHOX2B, MYH8, and MYH13) and groups of proteins which conjointly function in mRNA processing, ribosomal recruitment, cell-cell adhesion (e.g., CDH4), cytoskeleton organization, neuro-inflammation, and processing of amyloid precursor protein. Conspicuously, many links pointed to an involvement of the FOXP2-driven network in JAK/STAT signaling and the regulation of the ezrin-radixin-moesin complex. Altogether, the applied phylogenetic perspective substantiated FOXP2's importance for nervous system development, maintenance, and functioning. However, the study also disclosed new regulatory pathways that might prove to be useful for understanding the molecular background of the aforementioned developmental disorders and neurodegenerative diseases.

5.
J Diabetes Sci Technol ; 11(3): 577-583, 2017 05.
Article in English | MEDLINE | ID: mdl-28745092

ABSTRACT

The pentose xylose is enriched in edible algae, and is increasingly used as a slowly metabolized carbohydrate in functional food. It is known to interfere with glucose-dehydrogenase-based (GDH) blood glucose measurement systems for patients self-testing. The aim of our study was to investigate the extent of xylose interference in commercially available blood glucose meters. A heparinized whole blood sample was manipulated to contain 3 different glucose concentrations (50-80 mg/dL, 130-160 mg/dL, and 250-300 mg/dL) and 4 different xylose concentrations (0 mg/dL, 25 mg/dL, 50 mg/dL, and 100 mg/dL). Each sample was measured 3 times with 2 different strip lots per test meter (AccuChek Aviva, AccuChek Connect, Contour Next, FreeStyle Freedom Lite, FreeStyle Insulinx, MyStar Extra, OneTouch Verio IQ, and Wellion Calla, reference: YSI GlucoStat analyzer). For analysis, we calculated the xylose capture rate, that is, the xylose amount wrongly displayed as glucose. No xylose interference was seen with 4 meters: AccuChek Aviva (mean capture rate 0%), AccuChek Connect (-2%), MyStar Extra (10%), and Wellion Calla (8%). In contrast, substantial interference was observed with Contour Next (100%), FreeStyle Freedom Lite (104%), FreeStyle Insulinx (120%), and OneTouch Verio IQ (162%). We observed xylose interference in several GDH-based meters. This may become important with increased use of xylose in dietary and functional food products, in particular in products designed for weight loss. Our findings may affect the meter selection for patients who are consuming such food products as part of their lifestyle treatment regimen.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose/analysis , Xylose , Glucose 1-Dehydrogenase , Humans
6.
Cell Death Dis ; 8(1): e2557, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102851

ABSTRACT

Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 µM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.


Subject(s)
Apoptosis/genetics , Neuroblastoma/genetics , Prion Proteins/genetics , Profilins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Neuroblastoma/pathology , Neurons/metabolism , Neurons/pathology , Phosphorylation/drug effects , Proteome/genetics , Staurosporine/administration & dosage , Transfection
7.
Diabetes Technol Ther ; 18(10): 650-656, 2016 10.
Article in English | MEDLINE | ID: mdl-27749114

ABSTRACT

BACKGROUND: Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300. METHODS: Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64-74, 147-163, and 313-335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO2 and specific sample handling requirements, whereas teams B and C did not consider pO2. Each sample was tested four times with each device. In a separate experiment, a different group similar to group B performed the experiment before (D1) and after (D2) appropriate sample handling training. RESULTS: Mean absolute deviation from YSI was calculated as a metrix for all groups and devices. Mean absolute relative difference was 4.3% with team A (B: 9.2%, C: 5.2%). Team B had much higher readings and team C produced 100% of "sample composition" errors with high hematocrit levels. In a separate experiment, group D showed a result similar to group B before the training and improved significantly when considering the sample handling requirements (D1: 9.4%, D2: 4.5%, P < 0.05). CONCLUSIONS: Laboratory performance testing of EBCA devices should only be performed by trained staff considering specific sample handling requirements. The results suggest that healthcare centers should evaluate EBCA-based devices with capillary blood from patients in accordance with the instructions for use to achieve reliable results.


Subject(s)
Blood Glucose/analysis , Electrochemistry/methods , Specimen Handling/methods , Algorithms , Humans
8.
Front Cell Neurosci ; 10: 292, 2016.
Article in English | MEDLINE | ID: mdl-28066187

ABSTRACT

The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined. Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal cerebral ischemia are strongly supported. Conversely, increasing evidence indicates detrimental effects of increased PrPc expression on cancer progression, another condition accompanied by low oxygen tensions. A switch between anaerobic and aerobic metabolism characterizes both conditions. A cellular process that might unite both is glycolysis. Putative role of PrPc in stimulation of glycolysis in times of need is indeed thought provoking. A significance of astrocytic PrPc expression for neuronal survival under hypoxic conditions and possible association of PrPc with the astrocyte-neuron lactate shuttle is considered. We posit PrPc-induced lactate production via transactivation of lactate dehydrogenase A by hypoxia inducible factor 1α as an important factor for survival of both neurons and tumor cells in hypoxic microenvironment. Concomitantly, we discuss a cross-talk between Wnt/ß-catenin and PI3K/Akt signaling pathways in executing PrPc-induced activation of glycolysis. Finally, we would like to emphasize that we see a great potential in joining expertise from both fields, neuroscience and cancer research in revealing the mechanisms underlying hypoxia-related pathologies. PrPc may prove focal point for future research.

10.
J Diabetes Sci Technol ; 9(6): 1307-12, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26420624

ABSTRACT

BACKGROUND: Elevated fasting intact proinsulin is a biomarker of late-stage ß-cell-dysfunction associated with clinically relevant insulin resistance. In this pilot investigation, we explored the potential value of measuring intact proinsulin as a functional predictor of ß-cell exhaustion during an oral glucose tolerance test (OGTT). METHODS: The study was performed with 31 participants, 11 of whom were healthy subjects (7 female, age: 59 ± 20 years), 10 had impaired glucose tolerance (IGT, 6 female, 62 ± 10 years), and 10 had known type 2 diabetes (T2DM, 5 female, 53 ± 11 years, HbA1c: 7.0 ± 0.6%, disease duration: 8 ± 5 years). During OGTT, blood was drawn after 0 hours, 1 hour, and 2 hours for determination of glucose and intact proinsulin. Five years later, patients were again contacted to assess their diabetes status and the association to the previous OGTT results was analyzed. RESULTS: The OGTT (0 hours/1 hour/2 hours) results were as follows: healthy subjects: glucose: 94 ± 8 mg/dL/140 ± 29 mg/dL/90 ± 24 mg/dL, intact proinsulin: 3 ± 2 pmol/L/10 ± 7 pmol/L/10 ± 5 pmol/L); IGT: glucose: 102 ± 9 mg/dL/158 ± 57 mg/dL/149 ± 34 mg/dL, intact proinsulin: 7 ± 4 pmol/L/23 ± 8 pmol/L/28 ± 6 pmol/L; T2DM: glucose: 121 ± 20 mg/dL/230 ± 51 mg/dL/213 ± 34 mg/dL; intact proinsulin: 7 ± 7 pmol/L/26 ± 9 pmol/L/27 ± 10 pmol/L). Five years later, all of the IGT and 2 of the healthy subjects had developed T2DM and one had devloped IGT. All of them had elevated 2-hour proinsulin values in the initial OGTT, while patients with normal intact proinsulin results did not develop diabetes. CONCLUSIONS: Elevated 2-hour intact proinsulin levels during OGTT were predictive for later type 2 diabetes development. Further studies need to confirm our findings in larger populations.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Glucose Metabolism Disorders/diagnosis , Glucose Tolerance Test , Insulin-Secreting Cells/metabolism , Proinsulin/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Disease Progression , Female , Follow-Up Studies , Glucose Metabolism Disorders/blood , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Pilot Projects , Predictive Value of Tests , Risk Factors , Time Factors , Up-Regulation
11.
Exp Neurol ; 271: 155-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26024859

ABSTRACT

Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions.


Subject(s)
Gene Expression Regulation/physiology , Hypoxia/genetics , Hypoxia/metabolism , L-Lactate Dehydrogenase/metabolism , Prions/metabolism , Animals , Brain Infarction/etiology , Brain Infarction/metabolism , Cell Hypoxia/physiology , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Embryo, Mammalian , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Hypoxia/complications , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Prion Proteins , Prions/genetics , Time Factors , Transfection , Tubulin/metabolism
12.
J Diabetes Sci Technol ; 9(2): 262-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25549636

ABSTRACT

In previous studies, meters employing dynamic electrochemistry (DE), have been shown to correct for hematocrit (HCT) interference. This laboratory investigation assessed the HCT stability of MyStar Extra (Sanofi) in comparison to 7 competitive devices (Accu-Chek Aviva Nano & Accu-Chek Performa, Roche Diagnostics; Contour XT and Contour Link, Bayer; FreeStyle Freedom Lite, Abbott; MyLife Pura, Ypsomed; OneTouch Verio Pro, LifeScan). Venous heparinized blood was freshly drawn, immediately aliquoted, and manipulated to contain 3 different blood glucose concentrations (50-80 mg/dL, 150-180 mg/dL, and 350-400 mg/dL) and 5 different HCT levels (20-25%, 30-35%, 40-45%, 50-55%, and 60-65%). After careful oxygenation to normal blood oxygen pressure, each of the 15 different samples was measured 8 times with 2 devices and 2 strip lots of each meter (32 measurements/meter/sample). YSI Stat 2300 served as laboratory reference method. Next to determination of the mean absolute relative deviation (MARD), stability to HCT influence was assumed, when less than 10% difference occurred between the highest and lowest mean glucose deviations in relation to HCT over all tested glucose ranges (HIF: hematocrit interference factor). Four of the devices showed stable performance: Contour XT (MARD: 1.3%/HIF: 6.1%), MyStar Extra (4.7%/7.1%), OneTouch Verio Pro (4.5%/7.3%), and Contour Link (6.3%/9.3%). The 4 other meters were influenced by HCT (Accu-Chek Performa: 4.7%/20.9%, Accu-Chek Aviva Nano: 4.5%/22.4%, FreeStyle Freedom Lite: 4.8%/24.5%; MyLife Pura: 6.4%/28.7%). In this study, all meters showed a good accuracy, but only 50% of them, including MyStar Extra, were shown to reliably correct for potential hematocrit influence on the meter results.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Electrochemistry/instrumentation , Hematocrit , Humans
13.
Clin Lab ; 61(11): 1687-93, 2015.
Article in English | MEDLINE | ID: mdl-26731994

ABSTRACT

BACKGROUND: Modern biomarkers for the assessment of liver cell damage are indicative for distinct hepato-cellular deteriorations. We investigated the prevalence of these markers in healthy subjects and patients with early stage type 2 diabetes mellitus (T2DM) on metformin monotherapy. METHODS: The study was performed with blood from 36 healthy subjects (17 females, age: 43 ± 12.4 years, BMI: 22.6 ± 1.5 kg/m2) and 32 T2DM patients (15 females, age: 57 ± 7.9 years, BMI: 35.0 ± 6.3 kg/m2, HbA1c: 7.3 ± 0.8%). Parameters for liver cell damage included ALT and AST and alpha-glutathione-S-transferase (α-GST, acute liver injury), keratin 18 (K18, cell necrosis), caspase-cleaved K18 (ccK18, cell apoptosis), and collagen IV (C-IV, fibrosis). In addition, insulin, intact proinsulin, and hsCRP were determined for staging insulin resistance, ß-cell dysfunction, and chronic systemic inflammation. RESULTS: Differences were seen for mean ALT (T2DM: 36 ± 19 U/L vs. control: 20 ± 8 U/L, p < 0.001) but not for mean AST (26 ± 15 U/L vs. 25 ± 5 U/L, n.s.). All other biomarkers but insulin were higher in the T2DM group (intact proinsulin: 10 ± 6 pmol/L vs. 2 ± 1 pmol/L; hsCRP: 4.8 ± 2.7 mg/L vs. 1.1 ± 0.8 mg/L, α-GST: 17.3 ± 12.2 µg/L vs. 9.5 ± 0.2 µg/L, K18: 235 ± 125 U/L vs. 100 ± 33 U/L, ccK18: 280 ± 158 U/L vs. 167 ± 35 U/L, C-IV: 114 ± 28 µg/L vs. 92 ± 20 µg/L, all p < 0.001). Elimination of seven T2DM patients with elevated ALT or AST values did not change the overall results, which were also independent from the stage of the underlying diabetes disorders. CONCLUSIONS: Potential indications of liver cell damage were detected in T2DM patients with more specific biomarkers, which would not have been detected by ALT and AST alone.


Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 2/complications , Liver Diseases/complications , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged
14.
Mol Neurobiol ; 49(3): 1385-99, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24390569

ABSTRACT

Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann-Sträussler-Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23-230 PrPC (Δ23-230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23-230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23-230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23-230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23-230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23-230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1-253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23-230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.


Subject(s)
PrPC Proteins/biosynthesis , PrPC Proteins/genetics , Animals , Apoptosis/physiology , Cell Line , Cell Survival/physiology , Humans , Mice
15.
J Diabetes Sci Technol ; 7(6): 1522-9, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24351178

ABSTRACT

BACKGROUND: Accuracy of blood glucose readings is (among other things) dependent on the test strip being completely filled with sufficient sample volume. The devices are supposed to display an error message in case of incomplete filling. This laboratory study was performed to test the performance of 31 commercially available devices in case of incomplete strip filling. METHODS: Samples with two different glucose levels (60-90 and 300-350 mg/dl) were used to generate three different sample volumes: 0.20 µl (too low volume for any device), 0.32 µl (borderline volume), and 1.20 µl (low but supposedly sufficient volume for all devices). After a point-of-care capillary reference measurement (StatStrip, NovaBiomedical), the meter strip was filled (6x) with the respective volume, and the response of the meters (two devices) was documented (72 determinations/meter type). Correct response was defined as either an error message indicating incomplete filling or a correct reading (±20% compared with reference reading). RESULTS: Only five meters showed 100% correct responses [BGStar and iBGStar (both Sanofi), ACCU-CHEK Compact+ and ACCU-CHEK Mobile (both Roche Diagnostics), OneTouch Verio (LifeScan)]. The majority of the meters (17) had up to 10% incorrect reactions [predominantly incorrect readings with sufficient volume; Precision Xceed and Xtra, FreeStyle Lite, and Freedom Lite (all Abbott); GlucoCard+ and GlucoMen GM (both Menarini); Contour, Contour USB, and Breeze2 (all Bayer); OneTouch Ultra Easy, Ultra 2, and Ultra Smart (all LifeScan); Wellion Dialog and Premium (both MedTrust); FineTouch (Terumo); ACCU-CHEK Aviva (Roche); and GlucoTalk (Axis-Shield)]. Ten percent to 20% incorrect reactions were seen with OneTouch Vita (LifeScan), ACCU-CHEK Aviva Nano (Roche), OmniTest+ (BBraun), and AlphaChek+ (Berger Med). More than 20% incorrect reactions were obtained with Pura (Ypsomed), GlucoCard Meter and GlucoMen LX (both Menarini), Elite (Bayer), and MediTouch (Medisana). CONCLUSIONS: In summary, partial and incomplete blood filling of glucose meter strips is often associated with inaccurate reading. These findings underline the importance of appropriate patient education on this aspect of blood glucose self-monitoring.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Blood Volume , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus/blood , Humans , Patient Education as Topic , Reproducibility of Results
16.
Expert Opin Med Diagn ; 7(6): 511-6, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24088217

ABSTRACT

OBJECTIVE: Self-monitoring of blood glucose is a key element in diabetes management. Accurate and precise performance of blood glucose monitors (BGMs) ensures that valid values are obtained to guide treatment decisions by patients and physicians. BGStar and iBGStar are hand-held BGMs that use dynamic electrochemistry to correct for potential interferences and thereby minimize system errors. RESEARCH DESIGN AND METHODS: A single-center, in vitro diagnostic device performance evaluation with heparinized oxygenated venous blood samples (intra-assay precision) and control solutions (interassay precision) was performed in a laboratory setting, comparing BGStar and iBGStar with 12 competitors. MAIN OUTCOME MEASURES: The primary outcome was the coefficient of variation percent (CV%) of the BGMs investigated. RESULTS: In inter-assay precision analyses, all but GlucoMen LX had a CV <5%, and in intra-assay precision analyses, 10 of the 14 devices tested had CV <5%. BGStar and iBGStar had a CV <5% in both the inter- and intra-assay precision analyses. The smallest variation was found in the near-normoglycemic glucose range (5.3 - 8.0 mmol/l) for both BGStar and iBGStar in the inter-assay precision analysis. CONCLUSIONS: BGStar and iBGStar were proven to have very good inter-assay and high intra-assay precision, demonstrating low scattering of replicate measurements with both clinical samples and control solutions.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Diabetes Mellitus/blood , Adolescent , Adult , Aged , Humans , Middle Aged , Reproducibility of Results , Young Adult
17.
J Proteome Res ; 12(12): 5370-82, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-23919900

ABSTRACT

We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.


Subject(s)
Evolution, Molecular , Fertility/genetics , Phosphoproteins/genetics , Protein Processing, Post-Translational , Spermatozoa/metabolism , Tyrosine/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Conserved Sequence , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation , Humans , Male , Molecular Sequence Annotation , Molecular Sequence Data , Phosphoproteins/metabolism , Phosphorylation , Sequence Homology, Amino Acid , Serine/genetics , Serine/metabolism , Threonine/genetics , Threonine/metabolism , Tyrosine/genetics
18.
J Diabetes Sci Technol ; 7(1): 179-89, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23439176

ABSTRACT

BACKGROUND: Abnormal hematocrit levels may interfere with glucose readings of patient self-assessment blood glucose (BG) meters. The aim of this laboratory investigation was to assess the potential influence of hematocrit variations on a variety of BG meters applying different measurement technologies. METHODS: Venous heparinized blood was manipulated to contain three different BG concentrations (50-90, 120-180, and 280-350 mg/dl) and five different hematocrit levels (25%, 35%, 45%, 55%, and 65%). After careful oxygenation to normal blood oxygen pressure (65-100 mmHg), each sample was measured (eight times) with the following devices: Accu-Chek® Aviva Nano and Active, Breeze®2 and Contour®, FreeStyle Freedom Lite®, GlucoDr. auto™, Glucofix® mio Plus, GlucoLab™, GlucoMen® LX Plus, Nova Max® Link, Nova Max® Plus, OneTouch® Ultra®2 and Verio®, On Call® Plus and Platinum, Optium Xceed®, Precision Xceed®, and TaiDoc Fora TD-4227. A YSI 2300 STAT Plus™ glucose analyzer served as reference method. Stability to hematocrit influence was assumed, with <10% mean glucose result bias between the highest and lowest hematocrit levels. RESULTS: Six of the investigated meters showed a stable performance in this investigation: Accu-Chek Active (7%), Glucofix mio Plus (5%), GlucoMen LX Plus (4%), Nova Max Plus (4%), Nova Max Link (7%), and OneTouch Verio (3%). All other meters failed this hematocrit interference test, with FreeStyle Freedom Lite (11%), and On Call Platinum (12%) being the better devices and On Call Plus (68%), GlucoLab (51%), TaiDoc Fora TD-4227 (39%), and Breeze 2 (38%) showing the worst performance. CONCLUSIONS: Hematocrit may affect BG meter performance in daily routine. In case of interference, low hematocrit values (<35%) result in too high readings. Our results encourage use of meters that are not affected by hematocrit interference.


Subject(s)
Artifacts , Blood Glucose Self-Monitoring/standards , Diabetes Mellitus/blood , Hematocrit , Blood Glucose/analysis , Humans
19.
J Diabetes Sci Technol ; 7(1): 170-8, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23439175

ABSTRACT

BACKGROUND: We performed a blood glucose meter hematocrit (HCT) interference test with lower sample manipulation requirements by using blood samples from patients with different blood glucose (BG) levels. METHODS: Blood from five patients with different BG levels (2.8, 5.6, 8.3, 13.9, 19.4 mmol/liter) was manipulated to contain five different HCT concentrations (35/40/45/50/55%). Each sample was measured three times in parallel with 14 BG testing devices (reference method: YSI 2300 STAT Plus™ Glucose Analyzer). The largest mean deviations in both directions from the reference method (normalized to 100% at 45% HCT) were added as a measure for hematocrit interference factor (HIF). A HIF >10% was considered to represent clinically relevant HCT interference. RESULTS: Few devices showed no clinically relevant HCT interference at high/low BG levels: BGStar® (7.2%, 7.3%), iBGStar® (9.0%, 8.6%), Contour® (10.0%, 4.6%), OneTouch® Verio™ 2 (10.0%, 5.2%), and GlucoMen® LX (7.2%, 5.1%). Other devices showed interference at one or both glucose ranges: ACCU-CHEK® Aviva (12.6%, 10.7%), Aviva Nano (7.2%, 10.5%), Breeze2 (3.6%, 30.2%), GlucoCard G+ (12.6%, 7.0%), OneTouch® Ultra®2 (12.6%, 25.6%), FreeStyle Freedom Lite® (9.0%, 11.0%), Precision Xceed (16.2%, 15.3%), and MediTouch® (19.8%, 28.0%). The deviations in all devices were less pronounced in the HCT range of 35-50%. CONCLUSIONS: The results of this trial with less sample manipulation (HCT only) confirmed previous examinations with HCT and glucose manipulation. The same devices showed HCT stability as previously observed. Artificial sample manipulation may be less crucial than expected when evaluating HCT interference.


Subject(s)
Artifacts , Blood Glucose Self-Monitoring/standards , Diabetes Mellitus/blood , Hematocrit , Blood Glucose/analysis , Female , Humans , Male , Middle Aged
20.
J Diabetes Sci Technol ; 5(5): 1167-75, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-22027312

ABSTRACT

BACKGROUND: It has been demonstrated that dynamic electrochemistry can be used to correct blood glucose measurement results for potentially interfering conditions, such as humidity, hematocrit (HCT) variations, and ascorbic acid. The purpose of this laboratory investigation was to assess the potential influence of hematocrit variations on a variety of blood glucose meters applying different measurement technologies. METHODS: Venous heparinized whole blood was drawn, immediately aliquoted, and manipulated to contain three different blood glucose concentrations (80, 155, and 310 mg/dl) and five different hematocrit levels (25%, 37%, 45%, 52%, and 60%). After careful oxygenation to normal blood oxygen pressure, each of the resulting 15 different samples was measured 8 times with the following devices: BGStar, Contour, Accu-Chek Aviva, Accu-Chek Aviva Nano, Breeze 2, Precision Xceed, OneTouch Ultra 2, OneTouch Verio, FreeStyle Freedom Lite, Glucocard G+, GlucoMen LX, GlucoMen GM, and StatStrip [point-of-care (POC) device]. Cobas (Roche Diagnostics, glucose hexokinase method) served as laboratory plasma reference method. Stability to hematocrit influence was assumed when less than 10% bias occurred between the highest and lowest hematocrit levels when analyzing mean deviations for all three glucose concentrations. RESULTS: Besides the POC StatStrip device, which is known to measure and correct for hematocrit (resulting in <2% bias), four self-test meters also showed a stable performance in this investigation: dynamic electrochemistry, BGStar (8%), and static electrochemistry, Contour (6%), Glucocard G+ (2%), and OneTouch Verio (6%). The other meters failed this test: colorimetry, FreeStyle Freedom Lite (16%), and static electrochemistry, Accu-Chek Aviva (23%), Accu-Chek Aviva Nano (18%), Breeze 2 (36%), OneTouch Ultra 2 (34%), Precision Xceed (34%), GlucoMen LX (24%), and GlucoMen GM (31%). CONCLUSIONS: As hematocrit variations occur in daily routine (e.g., because of smoking, exercise, hypermenorrhea, pregnancy, stay in mountains, and hemodialysis), our results may encourage use of meters with stable performance under these conditions. Dynamic electrochemistry as used in the BGStar device (sanofi-aventis) appears to be an effective technology to correct for potential hematocrit influence on the meter results.


Subject(s)
Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Electrochemical Techniques/instrumentation , Blood Glucose Self-Monitoring/methods , Electrochemical Techniques/methods , Hematocrit , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...