Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Neurocase ; : 1-9, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757415

ABSTRACT

We present a longitudinal description of a man with the TARDBP I383V variant of frontotemporal dementia (FTD). His progressive changes in behavior and language resulted in a diagnosis of the right temporal variant of FTD, also called the semantic behavioral variant (sbvFTD). We also present data from a small series of patients with the TARDBP I383V variant who were enrolled in a nationwide FTD research collaboration (ALLFTD). These data support slowly progressive loss of semantic function. While semantic dementia is infrequently considered genetic, the TARDBP I383V variant seems to be an exception. Longitudinal analyses in larger samples are warranted.

2.
JAMA Netw Open ; 7(4): e244266, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558141

ABSTRACT

Importance: Frontotemporal lobar degeneration (FTLD) is relatively rare, behavioral and motor symptoms increase travel burden, and standard neuropsychological tests are not sensitive to early-stage disease. Remote smartphone-based cognitive assessments could mitigate these barriers to trial recruitment and success, but no such tools are validated for FTLD. Objective: To evaluate the reliability and validity of smartphone-based cognitive measures for remote FTLD evaluations. Design, Setting, and Participants: In this cohort study conducted from January 10, 2019, to July 31, 2023, controls and participants with FTLD performed smartphone application (app)-based executive functioning tasks and an associative memory task 3 times over 2 weeks. Observational research participants were enrolled through 18 centers of a North American FTLD research consortium (ALLFTD) and were asked to complete the tests remotely using their own smartphones. Of 1163 eligible individuals (enrolled in parent studies), 360 were enrolled in the present study; 364 refused and 439 were excluded. Participants were divided into discovery (n = 258) and validation (n = 102) cohorts. Among 329 participants with data available on disease stage, 195 were asymptomatic or had preclinical FTLD (59.3%), 66 had prodromal FTLD (20.1%), and 68 had symptomatic FTLD (20.7%) with a range of clinical syndromes. Exposure: Participants completed standard in-clinic measures and remotely administered ALLFTD mobile app (app) smartphone tests. Main Outcomes and Measures: Internal consistency, test-retest reliability, association of smartphone tests with criterion standard clinical measures, and diagnostic accuracy. Results: In the 360 participants (mean [SD] age, 54.0 [15.4] years; 209 [58.1%] women), smartphone tests showed moderate-to-excellent reliability (intraclass correlation coefficients, 0.77-0.95). Validity was supported by association of smartphones tests with disease severity (r range, 0.38-0.59), criterion-standard neuropsychological tests (r range, 0.40-0.66), and brain volume (standardized ß range, 0.34-0.50). Smartphone tests accurately differentiated individuals with dementia from controls (area under the curve [AUC], 0.93 [95% CI, 0.90-0.96]) and were more sensitive to early symptoms (AUC, 0.82 [95% CI, 0.76-0.88]) than the Montreal Cognitive Assessment (AUC, 0.68 [95% CI, 0.59-0.78]) (z of comparison, -2.49 [95% CI, -0.19 to -0.02]; P = .01). Reliability and validity findings were highly similar in the discovery and validation cohorts. Preclinical participants who carried pathogenic variants performed significantly worse than noncarrier family controls on 3 app tasks (eg, 2-back ß = -0.49 [95% CI, -0.72 to -0.25]; P < .001) but not a composite of traditional neuropsychological measures (ß = -0.14 [95% CI, -0.42 to 0.14]; P = .32). Conclusions and Relevance: The findings of this cohort study suggest that smartphones could offer a feasible, reliable, valid, and scalable solution for remote evaluations of FTLD and may improve early detection. Smartphone assessments should be considered as a complementary approach to traditional in-person trial designs. Future research should validate these results in diverse populations and evaluate the utility of these tests for longitudinal monitoring.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Adult , Aged , Female , Humans , Male , Middle Aged , Cohort Studies , Frontotemporal Dementia/diagnosis , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Lobar Degeneration/psychology , Neuropsychological Tests , Reproducibility of Results , Smartphone , Clinical Trials as Topic
3.
medRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38633784

ABSTRACT

Background and Objectives: TMEM106B has been proposed as a modifier of disease risk in FTLD-TDP, particularly in GRN mutation carriers. Furthermore, TMEM106B has been investigated as a disease modifier in the context of healthy aging and across multiple neurodegenerative diseases. The objective of this study is to evaluate and compare the effect of TMEM106B on gray matter volume and cognition in each of the common genetic FTD groups and in sporadic FTD patients. Methods: Participants were enrolled through the ARTFL/LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study, which includes symptomatic and presymptomatic individuals with a pathogenic mutation in C9orf72, GRN, MAPT, VCP, TBK1, TARDBP, symptomatic non-mutation carriers, and non-carrier family controls. All participants were genotyped for the TMEM106B rs1990622 SNP. Cross-sectionally, linear mixed-effects models were fitted to assess an association between TMEM106B and genetic group interaction with each outcome measure (gray matter volume and UDS3-EF for cognition), adjusting for education, age, sex and CDR®+NACC-FTLD sum of boxes. Subsequently, associations between TMEM106B and each outcome measure were investigated within the genetic group. For longitudinal modeling, linear mixed-effects models with time by TMEM106B predictor interactions were fitted. Results: The minor allele of TMEM106B rs1990622, linked to a decreased risk of FTD, associated with greater gray matter volume in GRN mutation carriers under the recessive dosage model. This was most pronounced in the thalamus in the left hemisphere, with a retained association when considering presymptomatic GRN mutation carriers only. The minor allele of TMEM106B rs1990622 also associated with greater cognitive scores among all C9orf72 mutation carriers and in presymptomatic C9orf72 mutation carriers, under the recessive dosage model. Discussion: We identified associations of TMEM106B with gray matter volume and cognition in the presence of GRN and C9orf72 mutations. This further supports TMEM106B as modifier of TDP-43 pathology. The association of TMEM106B with outcomes of interest in presymptomatic GRN and C9orf72 mutation carriers could additionally reflect TMEM106B's impact on divergent pathophysiological changes before the appearance of clinical symptoms.

4.
Brain Commun ; 6(2): fcae016, 2024.
Article in English | MEDLINE | ID: mdl-38449714

ABSTRACT

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

5.
Neurobiol Aging ; 134: 135-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091751

ABSTRACT

We assessed white matter (WM) integrity in MAPT mutation carriers (16 asymptomatic, 5 symptomatic) compared to 31 non-carrier family controls using diffusion tensor imaging (DTI) (fractional anisotropy; FA, mean diffusivity; MD) and neurite orientation dispersion and density imaging (NODDI) (neurite density index; NDI, orientation and dispersion index; ODI). Linear mixed-effects models accounting for age and family relatedness revealed alterations across DTI and NODDI metrics in all mutation carriers and in symptomatic carriers, with the most significant differences involving fronto-temporal WM tracts. Asymptomatic carriers showed higher entorhinal MD and lower cingulum FA and patterns of higher ODI mostly involving temporal areas and long association and projections fibers. Regression models between estimated time to or time from disease and DTI and NODDI metrics in key regions (amygdala, cingulum, entorhinal, inferior temporal, uncinate fasciculus) in all carriers showed increasing abnormalities with estimated time to or time from disease onset, with FA and NDI showing the strongest relationships. Neurite-based metrics, particularly ODI, appear to be particularly sensitive to early WM involvement in asymptomatic carriers.


Subject(s)
Heterozygote , Neurites , White Matter , tau Proteins , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Mutation , White Matter/diagnostic imaging , Humans , tau Proteins/genetics
6.
Ann Neurol ; 94(4): 632-646, 2023 10.
Article in English | MEDLINE | ID: mdl-37431188

ABSTRACT

OBJECTIVE: Microtubule-associated protein tau (MAPT) mutations cause frontotemporal lobar degeneration, and novel biomarkers are urgently needed for early disease detection. We used task-free functional magnetic resonance imaging (fMRI) mapping, a promising biomarker, to analyze network connectivity in symptomatic and presymptomatic MAPT mutation carriers. METHODS: We compared cross-sectional fMRI data between 17 symptomatic and 39 presymptomatic carriers and 81 controls with (1) seed-based analyses to examine connectivity within networks associated with the 4 most common MAPT-associated clinical syndromes (ie, salience, corticobasal syndrome, progressive supranuclear palsy syndrome, and default mode networks) and (2) whole-brain connectivity analyses. We applied K-means clustering to explore connectivity heterogeneity in presymptomatic carriers at baseline. Neuropsychological measures, plasma neurofilament light chain, and gray matter volume were compared at baseline and longitudinally between the presymptomatic subgroups defined by their baseline whole-brain connectivity profiles. RESULTS: Symptomatic and presymptomatic carriers had connectivity disruptions within MAPT-syndromic networks. Compared to controls, presymptomatic carriers showed regions of connectivity alterations with age. Two presymptomatic subgroups were identified by clustering analysis, exhibiting predominantly either whole-brain hypoconnectivity or hyperconnectivity at baseline. At baseline, these two presymptomatic subgroups did not differ in neuropsychological measures, although the hypoconnectivity subgroup had greater plasma neurofilament light chain levels than controls. Longitudinally, both subgroups showed visual memory decline (vs controls), yet the subgroup with baseline hypoconnectivity also had worsening verbal memory and neuropsychiatric symptoms, and extensive bilateral mesial temporal gray matter decline. INTERPRETATION: Network connectivity alterations arise as early as the presymptomatic phase. Future studies will determine whether presymptomatic carriers' baseline connectivity profiles predict symptomatic conversion. ANN NEUROL 2023;94:632-646.


Subject(s)
Frontotemporal Dementia , tau Proteins , Humans , Cross-Sectional Studies , tau Proteins/genetics , Brain/diagnostic imaging , Mutation/genetics , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Frontotemporal Dementia/genetics , Biomarkers
7.
JAMA Neurol ; 80(4): 377-387, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36848111

ABSTRACT

Importance: The neurological substrates of visual artistic creativity (VAC) are unknown. VAC is demonstrated here to occur early in frontotemporal dementia (FTD), and multimodal neuroimaging is used to generate a novel mechanistic hypothesis involving dorsomedial occipital cortex enhancement. These findings may illuminate a novel mechanism underlying human visual creativity. Objective: To determine the anatomical and physiological underpinnings of VAC in FTD. Design, Setting, and Participants: This case-control study analyzed records of 689 patients who met research criteria for an FTD spectrum disorder between 2002 and 2019. Individuals with FTD and emergence of visual artistic creativity (VAC-FTD) were matched to 2 control groups based on demographic and clinical parameters: (1) not visually artistic FTD (NVA-FTD) and (2) healthy controls (HC). Analysis took place between September 2019 to December 2021. Main Outcomes and Measures: Clinical, neuropsychological, genetic, and neuroimaging data were analyzed to characterize VAC-FTD and compare VAC-FTD with control groups. Results: Of 689 patients with FTD, 17 (2.5%) met VAC-FTD inclusion criteria (mean [SD] age, 65 [9.7] years; 10 [58.8%] female). NVA-FTD (n = 51; mean [SD] age, 64.8 [7] years; 25 [49.0%] female) and HC (n = 51; mean [SD] age, 64.5 [7.2] years; 25 [49%] female) groups were well matched to VAC-FTD demographically. Emergence of VAC occurred around the time of onset of symptoms and was disproportionately seen in patients with temporal lobe predominant degeneration (8 of 17 [47.1%]). Atrophy network mapping identified a dorsomedial occipital region whose activity inversely correlated, in healthy brains, with activity in regions found within the patient-specific atrophy patterns in VAC-FTD (17 of 17) and NVA-FTD (45 of 51 [88.2%]). Structural covariance analysis revealed that the volume of this dorsal occipital region was strongly correlated in VAC-FTD, but not in NVA-FTD or HC, with a volume in the primary motor cortex corresponding to the right-hand representation. Conclusions and Relevance: This study generated a novel hypothesis about the mechanisms underlying the emergence of VAC in FTD. These findings suggest that early lesion-induced activation of dorsal visual association areas may predispose some patients to the emergence of VAC under certain environmental or genetic conditions. This work sets the stage for further exploration of enhanced capacities arising early in the course of neurodegeneration.


Subject(s)
Frontotemporal Dementia , Humans , Female , Aged , Middle Aged , Male , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Creativity , Case-Control Studies , Prevalence , Atrophy , Magnetic Resonance Imaging
8.
Alzheimers Dement ; 19(7): 2842-2852, 2023 07.
Article in English | MEDLINE | ID: mdl-36591730

ABSTRACT

INTRODUCTION: Empathy relies on fronto-cingular and temporal networks that are selectively vulnerable in behavioral variant frontotemporal dementia (bvFTD). This study modeled when in the disease process empathy changes begin, and how they progress. METHODS: Four hundred thirty-one individuals with asymptomatic genetic FTD (n = 114), genetic and sporadic bvFTD (n = 317), and 163 asymptomatic non-carrier controls were enrolled. In sub-samples, we investigated empathy measured by the informant-based Interpersonal Reactivity Index (IRI) at each disease stage and over time (n = 91), and its correspondence to underlying atrophy (n = 51). RESULTS: Empathic concern (estimate = 4.38, 95% confidence interval [CI] = 2.79, 5.97; p < 0.001) and perspective taking (estimate = 5.64, 95% CI = 3.81, 7.48; p < 0.001) scores declined between the asymptomatic and very mild symptomatic stages regardless of pathogenic variant status. More rapid loss of empathy corresponded with subcortical atrophy. DISCUSSION: Loss of empathy is an early and progressive symptom of bvFTD that is measurable by IRI informant ratings and can be used to monitor behavior in neuropsychiatry practice and treatment trials.


Subject(s)
Empathy , Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnosis , Neuropsychological Tests , Atrophy , Magnetic Resonance Imaging
9.
J Neurosci ; 43(2): 333-345, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36446586

ABSTRACT

Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread derepression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used FreeSurfer software to assess the effects of C9orf72 HRE and clinical diagnosis (n = 78 individuals, male and female) on atrophy of thalamic nuclei. We also generated a novel, human, whole-blood RNA-sequencing dataset to determine the relationships among peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity (n = 114 individuals, male and female). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element L1HS L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from human HRE carriers revealed atrophy of specific thalamic nuclei, demonstrated that C9orf72 levels relate to clinical severity, and identified marked derepression of TEs, including L1HS, which predicted atrophy of FTD-relevant thalamic nuclei.SIGNIFICANCE STATEMENT Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of FTD and amyotrophic lateral sclerosis (ALS; C9-FTD/ALS). The clinical, neuroimaging, and pathologic features of C9-FTD/ALS are well characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we used a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements-genetic elements typically repressed in the human genome-in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Male , Female , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , C9orf72 Protein/genetics , DNA Transposable Elements , Atrophy
10.
Acta Neuropathol ; 145(1): 1-12, 2023 01.
Article in English | MEDLINE | ID: mdl-36469115

ABSTRACT

Tuberous sclerosis complex (TSC) is a neurogenetic disorder leading to epilepsy, developmental delay, and neurobehavioral dysfunction. The syndrome is caused by pathogenic variants in TSC1 (coding for hamartin) or TSC2 (coding for tuberin). Recently, we reported a progressive frontotemporal dementia-like clinical syndrome in a patient with a mutation in TSC1, but the neuropathological changes seen in adults with TSC with or without dementia have yet to be systematically explored. Here, we examined neuropathological findings in adults with TSC (n = 11) aged 30-58 years and compared them to age-matched patients with epilepsy unrelated to TSC (n = 9) and non-neurological controls (n = 10). In 3 of 11 subjects with TSC, we observed a neurofibrillary tangle-predominant "TSC tauopathy" not seen in epilepsy or non-neurological controls. This tauopathy was observed in the absence of pathological amyloid beta, TDP-43, or alpha-synuclein deposition. The neurofibrillary tangles in TSC tauopathy showed a unique pattern of post-translational modifications, with apparent differences between TSC1 and TSC2 mutation carriers. Tau acetylation (K274, K343) was prominent in both TSC1 and TSC2, whereas tau phosphorylation at a common phospho-epitope (S202) was observed only in TSC2. TSC tauopathy was observed in selected neocortical, limbic, subcortical, and brainstem sites and showed a 3-repeat greater than 4-repeat tau isoform pattern in both TSC1 and TSC2 mutation carriers, but no tangles were immunolabeled with MC1 or p62 antibodies. The findings suggest that individuals with TSC are at risk for a unique tauopathy in mid-life and that tauopathy pathogenesis may involve TSC1, TSC2, and related molecular pathways.


Subject(s)
Epilepsy , Tauopathies , Tuberous Sclerosis , Adult , Humans , Tumor Suppressor Proteins/genetics , Tuberous Sclerosis/genetics , Tuberous Sclerosis/metabolism , Amyloid beta-Peptides/genetics , Mutation/genetics , Epilepsy/genetics , Tauopathies/genetics
11.
JAMA Neurol ; 80(1): 82-90, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36374516

ABSTRACT

Importance: Physical activity is associated with cognitive health, even in autosomal dominant forms of dementia. Higher physical activity is associated with slowed cognitive and functional declines over time in adults carrying autosomal dominant variants for frontotemporal lobar degeneration (FTLD), but whether axonal degeneration is a potential neuroprotective target of physical activity in individuals with FTLD is unknown. Objective: To examine the association between physical activity and longitudinal neurofilament light chain (NfL) trajectories in individuals with autosomal dominant forms of FTLD. Design, Setting, and Participants: This cohort study included individuals from the ALLFTD Consortium, which recruited patients from sites in the US and Canada. Symptomatic and asymptomatic adults with pathogenic variants in one of 3 common genes associated with FTLD (GRN, C9orf72, or MAPT) who reported baseline physical activity levels and completed annual blood draws were assessed annually for up to 4 years. Genotype, clinical measures, and blood draws were collected between December 2014 and June 2019; data were analyzed from August 2021 to January 2022. Associations between reported baseline physical activity and longitudinal plasma NfL changes were assessed using generalized linear mixed-effects models adjusting for baseline age, sex, education, functional severity, and motor symptoms. Exposures: Baseline physical activity levels reported via the Physical Activity Scale for the Elderly. To estimate effect sizes, marginal means were calculated at 3 levels of physical activity: 1 SD above the mean represented high physical activity, 0 SD represented average physical activity, and 1 SD below the mean represented low physical activity. Main Outcomes and Measures: Annual plasma NfL concentrations were measured with single-molecule array technology. Results: Of 160 included FTLD variant carriers, 84 (52.5%) were female, and the mean (SD) age was 50.7 (14.7) years. A total of 51 (31.8%) were symptomatic, and 77 carried the C9orf72 variant; 39, GRN variant; and 44, MAPT variant. Higher baseline physical activity was associated with slower NfL trajectories over time. On average, NfL increased 45.8% (95% CI, 22.5 to 73.7) over 4 years in variant carriers. Variant carriers with high physical activity demonstrated 14.0% (95% CI, -22.7 to -4.3) slower NfL increases compared with those with average physical activity and 30% (95% CI, -52.2 to -8.8) slower NfL increases compared with those with low physical activity. Within genotype, C9orf72 and MAPT carriers with high physical activity evidenced 18% to 21% (95% CI, -43.4 to -7.2) attenuation in NfL, while the association between physical activity and NfL trajectory was not statistically significant in GRN carriers. Activities associated with higher cardiorespiratory and cognitive demands (sports, housework, and yardwork) were most strongly correlated with slower NfL trajectories (vs walking and strength training). Conclusions and Relevance: In this study, higher reported physical activity was associated with slower progression of an axonal degeneration marker in individuals with autosomal dominant FTLD. Physical activity may serve as a primary prevention target in FTLD.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Adult , Aged , Female , Humans , Male , Middle Aged , Atrophy , C9orf72 Protein/genetics , Cohort Studies , Exercise , Frontotemporal Lobar Degeneration/genetics , Intermediate Filaments
12.
Neurology ; 99(11): e1154-e1167, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35790423

ABSTRACT

BACKGROUND AND OBJECTIVES: Familial frontotemporal lobar degeneration (f-FTLD) is a phenotypically heterogeneous spectrum of neurodegenerative disorders most often caused by variants within chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), or granulin (GRN). The phenotypic association with each of these genes is incompletely understood. We hypothesized that the frequency of specific clinical features would correspond with different genes. METHODS: We screened the Advancing Research and Treatment in Frontotemporal Lobar Degeneration (ARTFL)/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS)/ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium for symptomatic carriers of pathogenic variants in C9orf72, MAPT, or GRN. We assessed for clinical differences among these 3 groups based on data recorded as part of a detailed neurologic examination, the Progressive Supranuclear Palsy Rating Scale, Progressive Supranuclear Palsy-Quality of Life Rating Scale, Unified Parkinson's Disease Rating Scale Part III (motor items), and the Amyotrophic Lateral Sclerosis Functional Rating Scale, revised version. Data were analyzed using Kruskal-Wallis and Wilcoxon rank-sum tests and Fisher exact test. RESULTS: We identified 184 symptomatic participants who had a single pathogenic variant in C9orf72 (n = 88), MAPT (n = 53), or GRN (n = 43). Motor symptom age at onset was earliest in the MAPT participants followed by C9orf72, whereas the GRN pathogenic variant carriers developed symptoms later. C9orf72 participants more often had fasciculations, muscle atrophy, and weakness, whereas parkinsonism was less frequent. Vertical oculomotor abnormalities were more common in the MAPT cohort, whereas apraxia and focal limb dystonia occurred more often in participants with GRN variants. DISCUSSION: We present a large comparative study of motor features in C9orf72, MAPT, and GRN pathogenic variant carriers with symptomatic f-FTLD. Our findings demonstrate characteristic phenotypic differences corresponding with specific gene variants that increase our understanding of the genotype-phenotype relationship in this complex spectrum of neurodegenerative disorders. TRIAL REGISTRATION INFORMATION: NCT02365922, NCT02372773, and NCT04363684.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Supranuclear Palsy, Progressive , C9orf72 Protein/genetics , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Granulins/genetics , Humans , Mutation/genetics , Progranulins/genetics , Quality of Life , tau Proteins/genetics
13.
Front Neurol ; 13: 909944, 2022.
Article in English | MEDLINE | ID: mdl-35812083

ABSTRACT

CSF1R-related leukoencephalopathy is an autosomal dominant neurodegenerative disease caused by mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R). Several studies have found that hematogenic stem cell transplantation is an effective disease modifying therapy however the literature regarding prodromal and early symptoms CSF1R-related leukoencephalopathy is limited. We describe a 63-year-old patient with 4 years of repetitive scratching and skin picking behavior followed by 10 years of progressive behavioral, cognitive, and motor decline in a pattern suggesting behavioral variant of frontotemporal dementia. Brain MRI demonstrated prominent frontal and parietal atrophy accompanied by underlying bilateral patchy white matter hyperintensities sparing the U fibers and cavum septum pellucidum. Whole-exome sequencing revealed a novel, predicted deleterious missense variant in a highly conserved amino acid in the tyrosine kinase domain of CSF1R (p.Gly872Arg). Given this evidence and the characteristic clinical and radiological findings this novel variant was classified as likely pathogenic according to the American College of Medical Genetics standard guidelines. Detailed description of the prodromal scratching and skin picking behavior and possible underlying mechanisms in this case furthers knowledge about early manifestations of CSF1R-related leukoencephalopathy with the hope that early detection and timely administration of disease modifying therapies becomes possible.

14.
Biodivers Data J ; 10: e75910, 2022.
Article in English | MEDLINE | ID: mdl-35095296

ABSTRACT

BACKGROUND: The Atlantic Forest is one of the most threatened biomes in the world. Despite that, this biome still includes many areas that are poorly known floristically, including several protected areas, such as the "Floresta Nacional do Rio Preto" ("Flona do Rio Preto"), located in the Brazilian State of Espírito Santo. This study used a published vascular plant species list for this protected area from the "Catálogo de Plantas das Unidades de Conservação do Brasil" as the basis to synthesise the species richness, endemism, conservation and new species occurrences found in the "Flona do Rio Preto". NEW INFORMATION: The published list of vascular plants was based on field expeditions conducted between 2018 and 2020 and data obtained from herbarium collections available in online databases. Overall, 722 species were documented for the "Flona do Rio Preto", 711 of which are native to Brazil and 349 are endemic to the Atlantic Forest. In addition, 60 species are geographically disjunct between the Atlantic and the Amazon Forests. Most of the documented species are woody and more than 50% of these are trees. Twenty-three species are threatened (CR, EN and VU), while five are Data Deficient (DD). Thirty-two species are new records for the State of Espírito Santo. Our results expand the knowledge of the flora of the Atlantic Forest and provide support for the development of new conservation policies for this protected area.

15.
Zootaxa ; 5068(2): 247-262, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34810710

ABSTRACT

The Neotropical frog genus Cryptobatrachus includes six currently recognized species distributed throughout the northern Andes in Colombia and Venezuela. Cryptobatrachus conditus, C. pedroruizi, and C. remotus were described from the Colombian and Venezuelan slopes of the Serrana del Perij. Due to the great morphological similarity among these species, we re-assess their taxonomic status based on morphological and molecular data from types, topotypes, and specimens from localities referred to in the original descriptions of these species. Morphometric comparisons showed that all these species are virtually indistinguishable, although some subtle qualitative differences in morphological traits distinguish C. conditus from the other species. Phylogenetic analyses of DNA sequences found that C. remotus and C. pedroruizi are not reciprocally monophyletic and exhibit low genetic divergence ( 1 %). Therefore, C. remotus should be considered a junior synonym of C. pedroruizi. This work stresses the importance of comprehensive taxon sampling in poorly explored areas, especially between neighbouring countries.


Subject(s)
Anura , Genetic Drift , Animals , Anura/genetics , Phylogeny
16.
Sci Adv ; 7(45): eabg3897, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739309

ABSTRACT

Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumulation and frontotemporal lobar degeneration. Now, we have identified genetic variants in TSC1 that decrease TSC1/hamartin levels and predispose to tauopathies such as Alzheimer's disease and progressive supranuclear palsy. Cellular and murine models of TSC1 haploinsufficiency, as well as human brains carrying a TSC1 risk variant, accumulated tau protein that exhibited aberrant acetylation. This acetylation hindered tau degradation via chaperone-mediated autophagy, thereby leading to its accumulation. Aberrant tau acetylation in TSC1 haploinsufficiency resulted from the dysregulation of both p300 acetyltransferase and SIRT1 deacetylase. Pharmacological modulation of either enzyme restored tau levels. This study substantiates TSC1 as a novel tauopathy risk gene and includes TSC1 haploinsufficiency as a genetic model for tauopathies. In addition, these findings promote tau acetylation as a rational target for tauopathy therapeutics and diagnostic.

17.
Neurology ; 96(18): e2296-e2312, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33827960

ABSTRACT

OBJECTIVE: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. METHODS: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. RESULTS: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. CONCLUSIONS: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.


Subject(s)
Disease Progression , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/diagnostic imaging , Neurofilament Proteins/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/trends , Male , Middle Aged , Predictive Value of Tests , Young Adult
18.
Ann Clin Transl Neurol ; 8(1): 95-110, 2021 01.
Article in English | MEDLINE | ID: mdl-33247623

ABSTRACT

OBJECTIVE: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. METHODS: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. RESULTS: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. INTERPRETATION: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.


Subject(s)
Brain/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , tau Proteins/genetics , Adult , Aged , Female , Heterozygote , Humans , Male , Middle Aged , Mutation
19.
Brain Pathol ; 31(2): 267-282, 2021 03.
Article in English | MEDLINE | ID: mdl-33314436

ABSTRACT

Polymorphisms in TMEM106B, a gene on chromosome 7p21.3 involved in lysosomal trafficking, correlates to worse neuropathological, and clinical outcomes in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) with TDP-43 inclusions. In a small cohort of C9orf72 expansion carriers, we previously found an atypical, neuroglial tauopathy in cases harboring a TMEM106B rs1990622 A/A genotype. To test whether TMEM106B genotype affects the risk of developing atypical tauopathy under a recessive genotype model (presence versus absence of two major alleles: A/A vs. A/G and G/G). We characterized the atypical tauopathy neuropathologically and determined its frequency by TMEM106B rs1990622 genotypes in 90 postmortem cases with a primary diagnosis of FTLD/ALS-TDP [mean age at death 65.5 years (±8.1), 40% female]. We investigated the effect of this new atypical tauopathy on demographics and clinical and neuropsychological metrics. We also genotyped TMEM106B in an independent series with phenotypically similar cases. Sixteen cases (16/90, 17.7 %) showed the temporal-predominant neuro-astroglial tauopathy, and 93.7% of them carried an A/A genotype (vs. ~35% in a population cohort). The odds ratio of FTLD/ALS-TDP individuals with the A/A genotype showing neuro-astroglial tauopathy was 13.9. Individuals with this tauopathy were older at onset (p = 0.01). The validation cohort had a similarly high proportion of rs1990622 A/A genotype. TDP-43 and tau changes co-occur in a subset of neurons. Our data add to the growing body of evidence that TMEM106B polymorphisms may modulate neurodegeneration. A distinctive medial temporal predominant, 4-repeat, neuro-astroglial tauopathy strongly correlates to TMEM106B A/A genotype in FTLD/ALS-TDP cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Astrocytes/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Neurons/pathology , Aged , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
20.
Neurology ; 96(5): e671-e683, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33199433

ABSTRACT

OBJECTIVE: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. METHODS: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. RESULTS: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. CONCLUSION: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD.


Subject(s)
Alzheimer Disease/blood , Frontotemporal Lobar Degeneration/blood , Neurofilament Proteins/blood , tau Proteins/blood , Adult , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Case-Control Studies , DNA-Binding Proteins/metabolism , Disease Progression , Female , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/diagnostic imaging , Frontotemporal Lobar Degeneration/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Positron-Emission Tomography , RNA-Binding Protein FUS/metabolism , Sensitivity and Specificity , Survival Rate , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...