Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 355(9): e2200004, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35621705

ABSTRACT

For the first time, compounds developed from the 1,2,3-triazole scaffold were evaluated as novel drugs to treat triple-negative breast cancer (TNBC). Four organic salts were idealized as nonclassical bioisosteres of miltefosine, which is used in the topical treatment for skin metastasizing breast carcinoma. Among them, derivative dhmtAc displayed better solubility and higher cytotoxicity against the human breast adenocarcinoma cell line and mouse 4T1 cell lines, which are representatives of TNBC. In vitro assays revealed that dhmtAc interferes with cell integrity, confirmed by lactate dehydogenase leakage. Due to its human peripheral blood mononuclear cell (PBMC) toxicity, dhmtAc in vivo studies were carried out with the drug incorporated in a long-circulating and pH-sensitive liposome (SpHL-dhmtAc), and the acute toxicity in BALB/c mice was determined. Free dhmtAc displayed cardiac and pulmonary toxicity after the systemic administration of 5 mg/kg doses. On the other hand, SpHL-dhmtAc displayed no toxicity at 20 mg/kg. The in vivo antitumor effect of SpHL-dhmtAc was investigated using the 4T1 heterotopic murine model. Intravenous administration of SpHL-dhmtAc reduced the tumor volume and weight, without interfering with the body weight, compared with the control group and the dhmtAc free form. The incorporation of the triazole compound in the liposome allowed the demonstration of its anticancer potential. These findings evidenced 1,3,4-trisubstituted-1,2,3-triazole as a promising scaffold for the development of novel drugs with applicability for the treatment of patients with TNBC.


Subject(s)
Liposomes , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Humans , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Structure-Activity Relationship , Triazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy
2.
J Biosci ; 42(4): 657-664, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29229883

ABSTRACT

The bioassay-guided fractionation of the ethyl acetate extract of the fungus Cochliobolus sp. highlighted leishmanicidal activity and allowed for anhydrocochlioquinone A (ANDC-A) isolation. MS, 1D and 2D NMR spectra of this compound were in agreement with those published in the literature. ANDC-A exhibited leishmanicidal activity with EC 50 value of 22.4 microgram/mL (44 mu M) and, when submitted to the microdilution assay against Gram-ositive and Gram-negative bacteria, showed a minimal inhibitory concentration against Staphylococcus aureus ATCC 25295 of 128 microgram/mL (248.7 mu M). It was also active against five human cancer cell lines, showing IC50 values from 5.4 to 20.3 mu M. ANDC-A demonstrated a differential selectivity for HL-60 (SI 5.5) and THP-1 (SI 4.3) cell lines in comparison with Vero cells and was more selective than cisplatin and doxorubicin against MCF-7 cell line in comparison with human peripheral blood mononuclear cells. ANDC-A was able to eradicate clonogenic tumour cells at concentrations of 20 and 50 mu M and induced apoptosis in all tumour cell lines at 20 mu M. These results suggest that ANDC-A might be used as a biochemical tool in the study of tumour cells biochemistry as well as an anticancer agent with durable effects on tumours.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Ascomycota/chemistry , Benzoquinones/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Ascomycota/metabolism , Benzoquinones/chemistry , Benzoquinones/isolation & purification , Cell Survival/drug effects , Chlorocebus aethiops , Escherichia coli/drug effects , Escherichia coli/growth & development , HCT116 Cells , HL-60 Cells , Humans , Jurkat Cells , Klebsiella oxytoca/drug effects , Klebsiella oxytoca/growth & development , Leishmania mexicana/drug effects , Leishmania mexicana/growth & development , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , MCF-7 Cells , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , THP-1 Cells , Vero Cells
3.
Bioorg Med Chem ; 24(13): 2988-2998, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27209169

ABSTRACT

Complexes [Bi(2AcPh)Cl2]·0.5H2O (1), [Bi(2AcpClPh)Cl2] (2), [Bi(2AcpNO2Ph)Cl2] (3), [Bi(2AcpOHPh)Cl2]·2H2O (4), [Bi(H2BzPh)Cl3]·2H2O (5), [Bi(H2BzpClPh)Cl3] (6), [Bi(2BzpNO2Ph)Cl2]·2H2O (7) and [Bi(H2BzpOHPh)Cl3]·2H2O (8) were obtained with 2-acetylpyridine phenylhydrazone (H2AcPh), its -para-chloro-phenyl- (H2AcpClPh), -para-nitro-phenyl (H2AcpNO2Ph) and -para-hydroxy-phenyl (H2AcpOHPh) derivatives, as well as with the 2-benzoylpyridine phenylhydrazone analogues (H2BzPh, H2BzpClPh, H2BzpNO2Ph, H2BzpOHPh). Upon coordination to bismuth(III) antibacterial activity against Gram-positive and Gram-negative bacterial strains significantly improved except for complex (4). The cytotoxic effects of the compounds under study were evaluated on HL-60, Jurkat and THP-1 leukemia, and on MCF-7 and HCT-116 solid tumor cells, as well as on non-malignant Vero cells. In general, 2-acetylpyridine-derived hydrazones proved to be more potent and more selective as cytotoxic agents than the corresponding 2-benzoylpyridine-derived counterparts. Exposure of HCT-116 cells to H2AcpClPh, H2AcpNO2Ph and complex (3) led to 99% decrease of the clonogenic survival. The IC50 values of these compounds were three-fold smaller when cells were cultured in soft-agar (3D) than when cells were cultured in monolayer (2D), suggesting that they constitute interesting scaffolds, which should be considered in further studies aiming to develop new drug candidates for the treatment of colon cancer.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Infective Agents/toxicity , Bacteria/drug effects , Bismuth/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/toxicity , Hydrazones/chemistry , Pyridines/chemistry , Animals , Anti-Infective Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Colony-Forming Units Assay , Coordination Complexes/chemistry , Humans , Inhibitory Concentration 50 , Neoplasms/drug therapy , Structure-Activity Relationship , Vero Cells
4.
Biometals ; 29(3): 515-26, 2016 06.
Article in English | MEDLINE | ID: mdl-27091443

ABSTRACT

Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Enzyme Inhibitors/pharmacology , Pyridines/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
5.
Eur J Med Chem ; 84: 537-44, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25058344

ABSTRACT

Metal complexes with 2-acetylpyridine-N(4)-orthochlorophenylthiosemicarbazone (H2Ac4oClPh) were assayed for their cytotoxicity against MCF-7 breast adenocarcinoma and HT-29 colon carcinoma cells. The thiosemicarbazone and most of the complexes were highly cytotoxic. H2Ac4oClPh and its gallium(III) and tin(IV) complexes did not show any inhibitory activity against thioredoxin reductase (TrxR) and glutathione reductase (GR). The palladium(II), platinum(II) and bismuth(III) complexes inhibited TrxR at micromolar concentrations but not GR. The antimony(III) and gold(III) complexes strongly inhibited TrxR at submicromolar doses with GR inhibition at higher concentrations. The selectivity of these complexes for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. TrxR inhibition is likely a contributing factor to the mode of action of the gold and antimony derivatives.


Subject(s)
Coordination Complexes/chemistry , Enzyme Inhibitors/pharmacology , Glutathione Reductase/antagonists & inhibitors , Organometallic Compounds/pharmacology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thiosemicarbazones/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HT29 Cells , Humans , Liver/enzymology , MCF-7 Cells , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Rats , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL