Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: mdl-33894177

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
2.
Sci Rep ; 10(1): 20554, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257736

ABSTRACT

Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.


Subject(s)
Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation/drug effects , Vitreoretinopathy, Proliferative , Adult , Aged , Animals , Core Binding Factor Alpha 2 Subunit/biosynthesis , Disease Models, Animal , Emulsions , Female , Humans , Male , Rabbits , Vitreoretinopathy, Proliferative/drug therapy , Vitreoretinopathy, Proliferative/metabolism , Vitreoretinopathy, Proliferative/pathology
3.
Transl Vis Sci Technol ; 9(8): 26, 2020 07.
Article in English | MEDLINE | ID: mdl-32855872

ABSTRACT

Purpose: Acute orbital inflammation can lead to irreversible vision loss in serious cases. Treatment thus far has been limited to systemic steroids or surgical decompression of the orbit. An animal model that mimics the characteristic features of acute orbital inflammation as found in thyroid eye disease can be used to explore novel treatment modalities. Methods: We developed a murine model of orbital inflammation by injecting oxazolone into the mouse orbit. The mice underwent magnetic resonance imaging (MRI) and were euthanized at various time points for histologic examination. Immunofluorescence studies of specific inflammatory cells and cytokine arrays were performed. Results: We found clinical and radiographic congruity between the murine model and human disease. After 72 hours, sensitized mice exhibited periorbital dermatitis and inflammation in the eyelids of the injected side. By one week, increased proptosis in the injected eye with significant eyelid edema was appreciated. By four weeks, inflammation and proptosis were decreased. At all three time points, the mice demonstrated exophthalmos and periorbital edema. Histopathologically, populations of inflammatory cells including T cells, macrophages, and neutrophils shared similarities with patient samples in thyroid eye disease. Proteomic changes in the levels of inflammatory and angiogenic markers correlated to the expected angiogenic, inflammatory, and fibrotic responses observed in patients with thyroid eye disease. Conclusions: A murine model of orbital inflammation created using oxazolone recapitulates some of the clinical features of thyroid eye disease and potentially other nonspecific orbital inflammation, typified by inflammatory cell infiltration, orbital tissue expansion and remodeling, and subsequent fibrosis. Translational Relevance: This animal model could serve as a viable platform with which to understand the underlying mechanisms of acute orbital inflammation and to investigate potential new, targeted treatments.


Subject(s)
Graves Ophthalmopathy , Oxazolone , Animals , Disease Models, Animal , Humans , Inflammation/chemically induced , Mice , Oxazolone/toxicity , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL