Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466550

ABSTRACT

The drugs available to treat sporotrichosis, an important yet neglected fungal infection, are limited. Some Sporothrix spp. strains present reduced susceptibility to these antifungals. Furthermore, some patients may not be indicated to use these drugs, while others may not respond to the therapy. The anthelmintic drug niclosamide is fungicidal against the Sporothrix brasiliensis type strain. This study aimed to evaluate whether niclosamide also has antifungal activity against Sporothrix globosa, Sporothrix schenckii and other S. brasiliensis strains with distinct genotypes and antifungal susceptibility status. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined using the microdilution method according to the CLSI protocol. The checkerboard method was employed to evaluate niclosamide synergism with drugs used in sporotrichosis treatment. Metabolic activity of the strains under niclosamide treatment was evaluated using the resazurin dye. Niclosamide was active against all S. brasiliensis strains (n = 17), but it was ineffective (MIC > 20 µM) for some strains (n = 4) of other pathogenic Sporothrix species. Niclosamide MIC values for Sporothrix spp. were similar for mycelial and yeast-like forms of the strains (P = 0.6604). Niclosamide was fungicidal (MFC/MIC ratio ≤ 2) for most strains studied (89%). Niclosamide activity against S. brasiliensis is independent of the fungal genotype or non-wild-type phenotypes for amphotericin B, itraconazole, or terbinafine. These antifungal drugs presented indifferent interactions with niclosamide. Niclosamide has demonstrated potential for repurposing as a treatment for sporotrichosis, particularly in S. brasiliensis cases, instigating in vivo studies to validate the in vitro findings.

2.
Med Mycol ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37170071

ABSTRACT

Nannizzia gypsea is a geophylic agent of human and animal dermatophytosis. This study compares the metabolic and morphostructural plasticity of N. gypsea strains isolated from moss, sand, and a dog. The in vitro metabolic plasticity included the detection of extracellular enzymes, thermotolerance, resistance to oxidative stress, and assessment of fungal growth. Structural plasticity studies included cell surface hydrophobicity, electronegativity, and size of macroconidia. Virulence was assessed on Tenebrio mollitor model. The strains showed low thermotolerance, susceptibility to oxidative stress, and were producers of keratinase, lipase and catalase. N. gypsea strains were unable to produce hemolysin, esterase, and phospholipase although they were able to grow with different carbon sources. The electronegative properties of the surface did not vary between the strains under study. The knowledge about N. gypsea metabolic and morphostructural plasticity could be crucial for the development of therapeutic strategies and control of dermatophytosis.


Nannizzia gypsea causes dermatophytosis due to its metabolic and morphostructural plasticity. Investigations on the fungus-host interaction are essential for the development of therapeutic intervention strategies and control of this important zoonoses in the world Public Health scenario.

3.
Mycopathologia ; 187(4): 375-384, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35778635

ABSTRACT

Feline sporotrichosis has emerged as an important public health issue in some countries, especially Brazil. Currently, zoonotic transmission of Sporothrix brasiliensis by domestic cats is the major sporotrichosis spread form throughout this country. Sporotrichosis in Brazil is a good model for the One Health concept application, which connects the environment, human and animal health. Under this thinking, the aim of this study was to investigate the seroprevalence of sporotrichosis in cats from Rolim de Moura, Rondônia, Brazil, using antibody detection by an ELISA test previously validated for human diagnosis. For the standardization of this test, 30 serum samples from cats with proven sporotrichosis and 11 sera from healthy cats were used. The assay showed 87% sensitivity and 100% specificity for the diagnosis of feline sporotrichosis. After the standardization, 202 serum samples from distinct cats from Rolim de Moura were evaluated. The test was positive in 63 (31.19%) cats from the studied area. A multivariate analysis revealed that living far from forest or agricultural areas as well as pure breed animals had higher odds ratios (3.157 and 2.281, respectively) for the presence of detectable levels of anti-Sporothrix antibodies. These results show the applicability of this assay in the detection of anti-Sporothrix antibodies in feline serum samples and point to a putative new occurrence area of urban sporotrichosis dispersing to the North region of Brazil.


Subject(s)
Cat Diseases , Sporotrichosis , Animals , Brazil/epidemiology , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Enzyme-Linked Immunosorbent Assay/veterinary , Humans , Seroepidemiologic Studies , Sporotrichosis/diagnosis , Sporotrichosis/epidemiology , Sporotrichosis/veterinary
4.
Mem Inst Oswaldo Cruz ; 116: e210207, 2021.
Article in English | MEDLINE | ID: mdl-34755820

ABSTRACT

BACKGROUND: Treatment of mycoses is often ineffective, usually prolonged, and has some side effects. These facts highlight the importance of discovering new molecules to treat fungal infections. OBJECTIVES: To search the Medicines for Malaria Venture COVID Box for drugs with antifungal activity. METHODS: Fourteen human pathogenic fungi were tested against the 160 drugs of this collection at 1.0 µM concentration. We evaluated the ability of the drugs to impair fungal growth, their fungicidal nature, and morphological changes caused to cells. FINDINGS: Thirty-four molecules (21.25%) presented antifungal activity. Seven are antifungal drugs and one is the agricultural fungicide cycloheximide. The other drugs with antifungal activity included antibiotics (n = 3), antimalarials (n = 4), antivirals (n = 2), antiparasitcs (n = 3), antitumor agents (n = 5), nervous system agents (n = 3), immunosuppressants (n = 3), antivomiting (n = 1), antiasthmatic (n = 1), and a genetic disorder agent (n = 1). Several of these drugs inhibited Histoplasma capsulatum and Paracoccidioides brasiliensis growth (15 and 20, respectively), while Fusarium solani was not affected by the drugs tested. Most drugs were fungistatic, but niclosamide presented fungicidal activity against the three dimorphic fungi tested. Cyclosporine affected morphology of Cryptococcus neoformans. MAIN CONCLUSIONS: These drugs represent new alternatives to the development of more accessible and effective therapies to treat human fungal infections.


Subject(s)
COVID-19 , Cryptococcus neoformans , Malaria , Pharmaceutical Preparations , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Drug Repositioning , Humans , Malaria/drug therapy , Microbial Sensitivity Tests , SARS-CoV-2
5.
Mem. Inst. Oswaldo Cruz ; 116: e210207, 2021. tab, graf
Article in English | LILACS | ID: biblio-1346578

ABSTRACT

BACKGROUND Treatment of mycoses is often ineffective, usually prolonged, and has some side effects. These facts highlight the importance of discovering new molecules to treat fungal infections. OBJECTIVES To search the Medicines for Malaria Venture COVID Box for drugs with antifungal activity. METHODS Fourteen human pathogenic fungi were tested against the 160 drugs of this collection at 1.0 µM concentration. We evaluated the ability of the drugs to impair fungal growth, their fungicidal nature, and morphological changes caused to cells. FINDINGS Thirty-four molecules (21.25%) presented antifungal activity. Seven are antifungal drugs and one is the agricultural fungicide cycloheximide. The other drugs with antifungal activity included antibiotics (n = 3), antimalarials (n = 4), antivirals (n = 2), antiparasitcs (n = 3), antitumor agents (n = 5), nervous system agents (n = 3), immunosuppressants (n = 3), antivomiting (n = 1), antiasthmatic (n = 1), and a genetic disorder agent (n = 1). Several of these drugs inhibited Histoplasma capsulatum and Paracoccidioides brasiliensis growth (15 and 20, respectively), while Fusarium solani was not affected by the drugs tested. Most drugs were fungistatic, but niclosamide presented fungicidal activity against the three dimorphic fungi tested. Cyclosporine affected morphology of Cryptococcus neoformans. MAIN CONCLUSIONS These drugs represent new alternatives to the development of more accessible and effective therapies to treat human fungal infections.


Subject(s)
Humans , Pharmaceutical Preparations , Cryptococcus neoformans , COVID-19 , Malaria/drug therapy , Microbial Sensitivity Tests , Drug Repositioning , SARS-CoV-2 , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology
6.
Mycopathologia ; 185(4): 665-673, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32643011

ABSTRACT

Microsporum canis is a zoophilic dermatophyte and the most common fungus isolated from dogs and cats worldwide. To invade skin, this pathogen uses different enzymes, which may be associated with virulence, that contribute to the fungal pathogenicity. The aim of this study is to compare the expression of enzymes that may be associated with virulence, and thermotolerance of M. canis strains isolated from dogs, cats, and humans. The in vitro expression of the enzymes keratinase, catalase, urease, hemolysin, and aspartic protease was evaluated in 52 M. canis strains recently isolated from 14 human patients, 12 dogs, 15 symptomatic, and 11 asymptomatic cats. In addition, thermotolerance was assessed by comparative analysis of fungal growth at 25 °C and 35 °C. Keratinase activity was low in 34 and moderate in 18 strains. Aspartic-protease activity was low in 7, moderate in 33, and high in 12 strains. Hemolysin activity was low in 44 and moderate in 8 strains. All strains were classified as low producers of catalase. All but three strains produced urease in vitro, with a broad range of activity. The strains presented in vitro growth at the two studied temperatures were classified as presenting low (36.5%), medium (44.3%), or high (19.2%) thermotolerance. There was no statistically significant difference in the new putative virulence-associated factors studied among the different hosts, which suggests that they may have a similar role on human, cat, and dog infection. Also, no difference was observed between strains isolated from symptomatic and asymptomatic cats. This suggests that these factors have a limited impact on the fate of feline dermatophytosis caused by M. canis.


Subject(s)
Cat Diseases , Dermatomycoses/veterinary , Dog Diseases , Microsporum/pathogenicity , Virulence Factors/analysis , Animals , Cat Diseases/microbiology , Cats , Dog Diseases/microbiology , Dogs , Humans , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...