Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Bone Marrow Transplant ; 56(12): 3049-3058, 2021 12.
Article in English | MEDLINE | ID: mdl-34556806

ABSTRACT

In this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.


Subject(s)
Graft vs Host Disease , Animals , Bone Marrow Transplantation , Boron Compounds , Glycine/analogs & derivatives , Graft vs Host Disease/drug therapy , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Immunity , Mice
2.
Blood ; 138(10): 858-870, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34036317

ABSTRACT

Invariant natural killer T (iNKT) cells are a T-cell subset with potent immunomodulatory properties. Experimental evidence in mice and observational studies in humans indicate that iNKT cells have antitumor potential as well as the ability to suppress acute and chronic graft-versus-host-disease (GVHD). Murine iNKT cells differentiate during thymic development into iNKT1, iNKT2, and iNKT17 sublineages, which differ transcriptomically and epigenomically and have subset-specific developmental requirements. Whether distinct iNKT sublineages also differ in their antitumor effect and their ability to suppress GVHD is currently unknown. In this work, we generated highly purified murine iNKT sublineages, characterized their transcriptomic and epigenomic landscape, and assessed specific functions. We show that iNKT2 and iNKT17, but not iNKT1, cells efficiently suppress T-cell activation in vitro and mitigate murine acute GVHD in vivo. Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both in vitro and in vivo. Thus, we report for the first time that iNKT sublineages have distinct and different functions, with iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties. These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy as well as for the prevention and treatment of GVHD.


Subject(s)
Graft vs Host Disease , Graft vs Tumor Effect/immunology , Lymphocyte Activation , Lymphoma, B-Cell , Natural Killer T-Cells/immunology , Neoplasms, Experimental , Animals , Epigenomics , Female , Gene Expression Profiling , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Male , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy
3.
Clin Cancer Res ; 25(15): 4616-4623, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31043390

ABSTRACT

PURPOSE: The biologically active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (vit D), has immunoregulatory properties via binding vitamin D receptor (VDR). In a prospective trial, we previously reported a reduction in the incidence of chronic GvHD (cGvHD) among patients who received vit D after allogeneic stem cell transplantation (allo-HSCT; Clinical Trials.gov: NCT02600988). Here we analyze the role of patients and donors' VDR SNPs on the immunomodulatory effect of vit D. PATIENTS AND METHODS: Patients undergoing allo-HSCT were included in a prospective phase I/II clinical trial (Alovita) in three consecutive cohorts: control (without vit D), low-dose (1,000 IU/day), and high-dose (5,000 IU/day) groups. Vit D was given from day -5 until +100 after transplant. Genotyping of four SNPs of the VDR gene, FokI, BsmI, ApaI, and TaqI, were performed using TaqMan SNP genotyping assays. RESULTS: We observed a decrease in the incidence of overall cGvHD at 1 year after allo-HSCT depending on the use or not of vit D among patients with FokI CT genotype (22.5% vs 80%, P = 0.0004) and among those patients without BsmI/ApaI/TaqI ATC haplotype (22.2% vs 68.8%, P = 0.0005). In a multivariate analysis, FokI CT genotype significantly influenced the risk of cGvHD in patients treated with vit D as compared with the control group (HR 0.143, P interaction < 0.001). CONCLUSIONS: Our results show that the immunomodulatory effect of vit D depends on the VDR SNPs, and patients carrying the FokI CT genotype display the highest benefit from receiving vit D after allo-HSCT.


Subject(s)
Cholecalciferol/therapeutic use , Graft vs Host Disease/drug therapy , Graft vs Host Disease/epidemiology , Haplotypes , Hematopoietic Stem Cell Transplantation/adverse effects , Polymorphism, Single Nucleotide , Receptors, Calcitriol/genetics , Case-Control Studies , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Humans , Incidence , Prospective Studies , Spain/epidemiology , Treatment Outcome , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...