Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 233: 116435, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37331556

ABSTRACT

In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.


Subject(s)
Air Pollutants , Mercury , Metals, Heavy , Tillandsia , Trace Elements , Humans , Trace Elements/analysis , Particulate Matter/analysis , Tillandsia/chemistry , Brazil , Biological Monitoring , Public Health , Aluminum , Air Pollutants/analysis , Environmental Monitoring/methods , Chromium/analysis , Mercury/analysis , Manganese/analysis , Metals, Heavy/analysis
2.
RSC Adv ; 12(41): 26846-26858, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36320853

ABSTRACT

This work reports the application of Mn-doped Co3O4 oxides in the electrocatalytic oxygen evolution reaction (OER). The materials were characterized by structural, morphological, and electrochemical techniques. The oxides with higher Co : Mn molar ratio presented a lower electron transfer resistance, and consequently the most promising OER activities. Pure Co3O4 shows an overpotential at j = 10 mA cm-2 of 761, 490, and 240 mV, at pH 1, 7, and 14, respectively, and a high TOF of 1.01 × 10-1 s-1 at pH 14. Tafel slopes around 120 mV dec-1 at acidic pH and around 60 mV dec-1 at alkaline pH indicate different OER mechanisms. High stability for Co3O4 was achieved for up to 15 h in all pHs, and no change in the structure and morphology after the electrocatalysis was observed. The reported excellent OER activity of the Mn-Co oxides in a wide pH range is important to broaden the practical applicability in different electrolyte solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...