Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 14(36): 3512-3520, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36004766

ABSTRACT

Monitoring sulfur in biodiesel is of fundamental importance because even in low concentrations, it can harm the operation of the engine parts and increase the emission of toxic gases and particulate material. Hence, a simple, quick and sensitive adsorptive stripping voltammetry (AdSV) method based on a silver solid amalgam electrode (AgSAE) was developed to determine sulfur in biodiesel. The novel electrochemical method was evaluated through the linear sweep adsorptive stripping voltammetry (LSAdSV), square wave adsorptive stripping voltammetry (SWAdSV) and differential pulse adsorptive stripping voltammetry (DPAdSV) in a NH3/NH4+ buffer solution (pH 9.0), containing Na2SO3. The method was applied in biodiesel microemulsion samples under optimal conditions. To this end, a ternary phase diagram was constructed, employing three components: biodiesel/propan-1-ol/buffer solution. The microemulsion with the best response was found to be 25% NH3/NH4+ buffer (pH 9.0), 5.0% biodiesel and 70% propan-1-ol. The method reached a detection limit in the order of 10-7 mol L-1 of sulfur, and recovery values between 80% and 116%. The method was applied in the determination of sulfur in biodiesel, and the amount in the samples was found to be below the value stipulated by the regulatory agencies. The method can be a promising alternative for determining sulfur in the microemulsion of biodiesel, with the ability to provide a fast response regarding the quality of this biofuel.


Subject(s)
Biofuels , Silver , Electrochemistry/methods , Electrodes , Gases , Sulfur
2.
Anal Bioanal Chem ; 381(8): 1619-24, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15782329

ABSTRACT

A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 microL phosphoric acid 1 mol L(-1) at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde-DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C18 column, using methanol/LiCl((aq)) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 mg L(-1) per injection (20 microL) and the limit of detection (LOD) for acetaldehyde was 2.03 microg L(-1), with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n = 5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...