Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383396

ABSTRACT

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Subject(s)
Fatty Acids, Omega-3 , Islets of Langerhans , N-Glycosyl Hydrolases , Mice , Animals , Humans , Islets of Langerhans/metabolism , Cell Death , Cytokines/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Phosphatidylcholines/metabolism
2.
Commun Biol ; 6(1): 256, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964318

ABSTRACT

Direct lineage reprogramming of one somatic cell into another without transitioning through a progenitor stage has emerged as a strategy to generate clinically relevant cell types. One cell type of interest is the pancreatic insulin-producing ß cell whose loss and/or dysfunction leads to diabetes. To date it has been possible to create ß-like cells from related endodermal cell types by forcing the expression of developmental transcription factors, but not from more distant cell lineages like fibroblasts. In light of the therapeutic benefits of choosing an accessible cell type as the cell of origin, in this study we set out to analyze the feasibility of transforming human skin fibroblasts into ß-like cells. We describe how the timed-introduction of five developmental transcription factors (Neurog3, Pdx1, MafA, Pax4, and Nkx2-2) promotes conversion of fibroblasts toward a ß-cell fate. Reprogrammed cells exhibit ß-cell features including ß-cell gene expression and glucose-responsive intracellular calcium mobilization. Moreover, reprogrammed cells display glucose-induced insulin secretion in vitro and in vivo. This work provides proof-of-concept of the capacity to make insulin-producing cells from human fibroblasts via transcription factor-mediated direct reprogramming.


Subject(s)
Insulin , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Insulin/metabolism , Gene Expression Regulation , Cell Differentiation/physiology , Fibroblasts/metabolism
3.
JCI Insight ; 6(23)2021 12 08.
Article in English | MEDLINE | ID: mdl-34699385

ABSTRACT

In response to liver injury, hepatic stellate cells activate and acquire proliferative and contractile features. The regression of liver fibrosis appears to involve the clearance of activated hepatic stellate cells, either by apoptosis or by reversion toward a quiescent-like state, a process called deactivation. Thus, deactivation of active hepatic stellate cells has emerged as a novel and promising therapeutic approach for liver fibrosis. However, our knowledge of the master regulators involved in the deactivation and/or activation of fibrotic hepatic stellate cells is still limited. The transcription factor GATA4 has been previously shown to play an important role in embryonic hepatic stellate cell quiescence. In this work, we show that lack of GATA4 in adult mice caused hepatic stellate cell activation and, consequently, liver fibrosis. During regression of liver fibrosis, Gata4 was reexpressed in deactivated hepatic stellate cells. Overexpression of Gata4 in hepatic stellate cells promoted liver fibrosis regression in CCl4-treated mice. GATA4 induced changes in the expression of fibrogenic and antifibrogenic genes, promoting hepatic stellate cell deactivation. Finally, we show that GATA4 directly repressed EPAS1 transcription in hepatic stellate cells and that stabilization of the HIF2α protein in hepatic stellate cells leads to liver fibrosis.


Subject(s)
GATA4 Transcription Factor/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/genetics , Animals , Humans , Liver Cirrhosis/pathology , Mice , Transfection
4.
Bioinformatics ; 37(22): 4240-4242, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34009302

ABSTRACT

MOTIVATION: UMI-4C, a technique that combines chromosome conformation capture (4C) and unique molecular identifiers (UMI), is widely used to profile and quantitatively compare targeted chromosomal contact profiles. The analysis of UMI-4C experiments presents several computational challenges, including the removal of the PCR duplication bias and the identification of differential chromatin contacts. RESULTS: We have developed UMI4Cats (UMI-4C Analysis Turned Simple), an R package that facilitates processing, analyzing and visualizing of data obtained by UMI-4C experiments. AVAILABILITY AND IMPLEMENTATION: UMI4Cats is implemented as an R package supported on Linux, MacOS and MS Windows. UMI4Cats is available from Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/UMI4Cats.html) and GitHub (https://github.com/Pasquali-lab/UMI4Cats). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Chromatin , Software , Chromosomes
5.
Curr Diab Rep ; 21(1): 1, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33387073

ABSTRACT

PURPOSE OF REVIEW: Type 1 diabetes (T1D) develops as a consequence of a combination of genetic predisposition and environmental factors. Combined, these events trigger an autoimmune disease that results in progressive loss of pancreatic ß cells, leading to insulin deficiency. This article reviews the current knowledge on the genetics of T1D with a specific focus on genetic variation in pancreatic islet regulatory networks and its implication to T1D risk and disease development. RECENT FINDINGS: Accumulating evidence suggest an active role of ß cells in T1D pathogenesis. Based on such observation several studies aimed in mapping T1D risk variants acting at the ß cell level. Such studies unravel T1D risk loci shared with type 2 diabetes (T2D) and T1D risk variants potentially interfering with ß-cell responses to external stimuli. The characterization of regulatory genomics maps of disease-relevant states and cell types can be used to elucidate the mechanistic role of ß cells in the pathogenesis of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Genomics , Humans
6.
Nat Commun ; 11(1): 2584, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444635

ABSTRACT

Interferon-α (IFNα), a type I interferon, is expressed in the islets of type 1 diabetic individuals, and its expression and signaling are regulated by T1D genetic risk variants and viral infections associated with T1D. We presently characterize human beta cell responses to IFNα by combining ATAC-seq, RNA-seq and proteomics assays. The initial response to IFNα is characterized by chromatin remodeling, followed by changes in transcriptional and translational regulation. IFNα induces changes in alternative splicing (AS) and first exon usage, increasing the diversity of transcripts expressed by the beta cells. This, combined with changes observed on protein modification/degradation, ER stress and MHC class I, may expand antigens presented by beta cells to the immune system. Beta cells also up-regulate the checkpoint proteins PDL1 and HLA-E that may exert a protective role against the autoimmune assault. Data mining of the present multi-omics analysis identifies two compound classes that antagonize IFNα effects on human beta cells.


Subject(s)
Alternative Splicing , Insulin-Secreting Cells/physiology , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Alternative Splicing/drug effects , Cells, Cultured , Chromatin/drug effects , Chromatin/metabolism , Data Mining , Diabetes Mellitus, Type 1/genetics , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Insulin-Secreting Cells/drug effects , Protein Interaction Maps , Proteomics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site
7.
Nat Genet ; 51(11): 1588-1595, 2019 11.
Article in English | MEDLINE | ID: mdl-31676868

ABSTRACT

The early stages of type 1 diabetes (T1D) are characterized by local autoimmune inflammation and progressive loss of insulin-producing pancreatic ß cells. Here we show that exposure to proinflammatory cytokines reveals a marked plasticity of the ß-cell regulatory landscape. We expand the repertoire of human islet regulatory elements by mapping stimulus-responsive enhancers linked to changes in the ß-cell transcriptome, proteome and three-dimensional chromatin structure. Our data indicate that the ß-cell response to cytokines is mediated by the induction of new regulatory regions as well as the activation of primed regulatory elements prebound by islet-specific transcription factors. We find that T1D-associated loci are enriched with newly mapped cis-regulatory regions and identify T1D-associated variants disrupting cytokine-responsive enhancer activity in human ß cells. Our study illustrates how ß cells respond to a proinflammatory environment and implicate a role for stimulus response islet enhancers in T1D.


Subject(s)
Chromatin/genetics , Cytokines/pharmacology , Diabetes Mellitus, Type 1/genetics , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Insulin-Secreting Cells/metabolism , Transcriptome , Chromatin/chemistry , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/pathology , Enhancer Elements, Genetic , Genome-Wide Association Study , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Transcription Factors
8.
Nat Genet ; 51(7): 1137-1148, 2019 07.
Article in English | MEDLINE | ID: mdl-31253982

ABSTRACT

Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.


Subject(s)
Chromatin/chemistry , Diabetes Mellitus, Type 2/genetics , Enhancer Elements, Genetic , Gene Expression Regulation , Gene Regulatory Networks , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Chromatin/genetics , Cohort Studies , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Molecular Conformation , Promoter Regions, Genetic
9.
Diabetes ; 67(9): 1807-1815, 2018 09.
Article in English | MEDLINE | ID: mdl-30084829

ABSTRACT

Type 2 diabetes mellitus (T2DM) is characterized by the inability of the insulin-producing ß-cells to overcome insulin resistance. We previously identified an imprinted region on chromosome 14, the DLK1-MEG3 locus, as being downregulated in islets from humans with T2DM. In this study, using targeted epigenetic modifiers, we prove that increased methylation at the promoter of Meg3 in mouse ßTC6 ß-cells results in decreased transcription of the maternal transcripts associated with this locus. As a result, the sensitivity of ß-cells to cytokine-mediated oxidative stress was increased. Additionally, we demonstrate that an evolutionarily conserved intronic region at the MEG3 locus can function as an enhancer in ßTC6 ß-cells. Using circular chromosome conformation capture followed by high-throughput sequencing, we demonstrate that the promoter of MEG3 physically interacts with this novel enhancer and other putative regulatory elements in this imprinted region in human islets. Remarkably, this enhancer is bound in an allele-specific manner by the transcription factors FOXA2, PDX1, and NKX2.2. Overall, these data suggest that the intronic MEG3 enhancer plays an important role in the regulation of allele-specific expression at the imprinted DLK1-MEG3 locus in human ß-cells, which in turn impacts the sensitivity of ß-cells to cytokine-mediated oxidative stress.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Islets of Langerhans/metabolism , Membrane Proteins/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Animals , Calcium-Binding Proteins , Cell Line , Cytokines/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Diabetes Mellitus, Type 2/pathology , Enhancer Elements, Genetic , Epigenesis, Genetic , Genetic Loci , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Islets of Langerhans/pathology , Locus Control Region , Membrane Proteins/genetics , Mice , Mutation , Nuclear Proteins , Oxidative Stress/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tissue Banks , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Methods Mol Biol ; 1766: 197-208, 2018.
Article in English | MEDLINE | ID: mdl-29605854

ABSTRACT

The regulatory mechanisms that ensure an accurate control of gene transcription are central to cellular function, development and disease. Such mechanisms rely largely on noncoding regulatory sequences that allow the establishment and maintenance of cell identity and tissue-specific cellular functions.The study of chromatin structure and nucleosome positioning allowed revealing transcription factor accessible genomic sites with regulatory potential, facilitating the comprehension of tissue-specific cis-regulatory networks. Recently a new technique coupled with high-throughput sequencing named Assay for Transposase Accessible Chromatin (ATAC-seq) emerged as an efficient method to chart open chromatin genome wide. The application of such technique to different cell types allowed unmasking tissue-specific regulatory elements and characterizing cis-regulatory networks. Herein we describe the implementation of the ATAC-seq method to human pancreatic islets, a tissue playing a central role in the control of glucose metabolism.


Subject(s)
Chromatin/drug effects , Chromatin/genetics , High-Throughput Screening Assays , Islets of Langerhans/enzymology , Transposases/pharmacology , Chromatin/chemistry , Epigenomics , Humans , Islets of Langerhans/chemistry , Nucleosomes/chemistry , Nucleosomes/drug effects , Nucleosomes/genetics , Quality Control , Sequence Alignment , Sequence Analysis, DNA , Tissue Culture Techniques , Transcription, Genetic , Transposases/chemistry
11.
Front Genet ; 8: 13, 2017.
Article in English | MEDLINE | ID: mdl-28261261

ABSTRACT

The pancreatic islet is a highly specialized tissue embedded in the exocrine pancreas whose primary function is that of controlling glucose homeostasis. Thus, understanding the transcriptional control of islet-cell may help to puzzle out the pathogenesis of glucose metabolism disorders. Integrative computational analyses of transcriptomic and epigenomic data allows predicting genomic coordinates of putative regulatory elements across the genome and, decipher tissue-specific functions of the non-coding genome. We herein present the Islet Regulome Browser, a tool that allows fast access and exploration of pancreatic islet epigenomic and transcriptomic data produced by different labs worldwide. The Islet Regulome Browser is now accessible on the internet or may be installed locally. It allows uploading custom tracks as well as providing interactive access to a wealth of information including Genome-Wide Association Studies (GWAS) variants, different classes of regulatory elements, together with enhancer clusters, stretch-enhancers and transcription factor binding sites in pancreatic progenitors and adult human pancreatic islets. Integration and visualization of such data may allow a deeper understanding of the regulatory networks driving tissue-specific transcription and guide the identification of regulatory variants. We believe that such tool will facilitate the access to pancreatic islet public genomic datasets providing a major boost to functional genomics studies in glucose metabolism related traits including diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL
...