Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Blood Adv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739724

ABSTRACT

Progression of myeloproliferative neoplasms (MPNs) to accelerated or blast-phase is associated with poor survival outcomes. Since 2017 there have been several therapies approved for use in acute myeloid leukemia (AML); these therapies have been incorporated into the management of accelerated/blast-phase MPNs (MPN-AP/BP). We performed a multi-center analysis to investigate outcomes of patients diagnosed with MPN-AP/BP in 2017 or later. Two-hundred two patients were identified; median overall survival (OS) was 0.86 years. We also analyzed patients based on first-line treatment; the three most common approaches were intensive chemotherapy (IC) (n=65), DNA methyltransferase inhibitor (DNMTi)-based regimens (n=65), and DNMTi + venetoclax (VEN)-based regimens (n=54). Median OS was not significantly different by treatment type. In addition, we evaluated response by 2017 European LeukemiaNet (ELN) AML criteria and 2012 MPN-BP criteria in an effort to understand the association of response with survival outcomes. We also analyzed outcomes in 65 patients that received allogeneic hematopoietic stem cell transplant (allo-HCT); median OS was 2.30 years from time of allo-HCT. Our study demonstrates that survival amongst patients with MPN-AP/BP is limited in the absence of allo-HCT even in the current era of therapeutics and underscores the urgent need for new agents and approaches.

3.
Br J Haematol ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613141

ABSTRACT

Histiocytic neoplasms are diverse clonal haematopoietic disorders, and clinical disease is mediated by tumorous infiltration as well as uncontrolled systemic inflammation. Individual subtypes include Langerhans cell histiocytosis (LCH), Rosai-Dorfman-Destombes disease (RDD) and Erdheim-Chester disease (ECD), and these have been characterized with respect to clinical phenotypes, driver mutations and treatment paradigms. Less is known about patients with mixed histiocytic neoplasms (MXH), that is two or more coexisting disorders. This international collaboration examined patients with biopsy-proven MXH with respect to component disease subtypes, oncogenic driver mutations and responses to conventional (chemotherapeutic or immunosuppressive) versus targeted (BRAF or MEK inhibitor) therapies. Twenty-seven patients were studied with ECD/LCH (19/27), ECD/RDD (6/27), RDD/LCH (1/27) and ECD/RDD/LCH (1/27). Mutations previously undescribed in MXH were identified, including KRAS, MAP2K2, MAPK3, non-V600-BRAF, RAF1 and a BICD2-BRAF fusion. A repeated-measure generalized estimating equation demonstrated that targeted treatment was statistically significantly (1) more likely to result in a complete response (CR), partial response (PR) or stable disease (SD) (odds ratio [OR]: 17.34, 95% CI: 2.19-137.00, p = 0.007), and (2) less likely to result in progression (OR: 0.08, 95% CI: 0.03-0.23, p < 0.0001). Histiocytic neoplasms represent an entity with underappreciated clinical and molecular diversity, poor responsiveness to conventional therapy and exquisite sensitivity to targeted therapy.

4.
Haematologica ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450530

ABSTRACT

Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patient management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs. In contrast to solid tumors, conventional sources of normal control (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we find nail cfDNA is a robust source of germline control for paired genomic studies. In a subset of patients, nail DNA may have tumor DNA contamination, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1482) compared to lymphoid diseases (5.4%; 61/1128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. For nails collected after allogeneic stem-cell transplantation, donor DNA was identified in 22% (11/50). In this cohort, an association with recent history of graft-vs-host disease was identified. These findings should be considered as a potential limitation for the use of nail as normal control but could also provide important diagnostic information regarding the disease process.

5.
Leuk Lymphoma ; 65(5): 548-559, 2024 May.
Article in English | MEDLINE | ID: mdl-38391126

ABSTRACT

BPDCN is an aggressive myeloid malignancy with a poor prognosis. It derives from the precursors of plasmacytoid dendritic cells and is characterized by CD123 overexpression, which is seen in all patients with BPDCN. The CD123-directed therapy tagraxofusp is the only approved treatment for BPDCN; it was approved in the US as monotherapy for the treatment of patients aged ≥2 years with treatment-naive or relapsed/refractory BPDCN. Herein, we review the available data supporting the utility of tagraxofusp in treating patients with BPDCN. In addition, we present best practices and real-world insights from clinicians in academic and community settings in the US on how they use tagraxofusp to treat BPDCN. Several case studies illustrate the efficacy of tagraxofusp and discuss its safety profile, as well as the prevention, mitigation, and management of anticipated adverse events.


Subject(s)
Dendritic Cells , Humans , Treatment Outcome , Interleukin-3 Receptor alpha Subunit/metabolism , Interleukin-3 Receptor alpha Subunit/analysis , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Hematologic Neoplasms/diagnosis , Disease Management , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/pathology , Recombinant Fusion Proteins/therapeutic use , Prognosis
6.
Ther Adv Hematol ; 15: 20406207241229588, 2024.
Article in English | MEDLINE | ID: mdl-38380373

ABSTRACT

Interferons are cytokines with immunomodulatory properties and disease-modifying effects that have been used to treat myeloproliferative neoplasms (MPNs) for more than 35 years. The initial use of interferons was limited due to difficulties with administration and a significant toxicity profile. Many of these shortcomings were addressed by covalently binding polyethylene glycol to the interferon structure, which increases the stability, prolongs activity, and reduces immunogenicity of the molecule. In the current therapeutic landscape, pegylated interferons are recommended for use in the treatment of polycythemia vera, essential thrombocythemia, and primary myelofibrosis. We review recent efficacy, molecular response, and safety data for the two available pegylated interferons, peginterferon alfa-2a (Pegasys) and ropeginterferon alfa-2b-njft (BESREMi). The practical management of interferon-based therapies is discussed, along with our opinions on whether to and how to switch from hydroxyurea to one of these therapies. Key topics and questions related to use of interferons, such as their safety and tolerability, the significance of variant allele frequency, advantages of early treatment, and what the future of interferon therapy may look like, will be examined. Pegylated interferons represent an important therapeutic option for patients with MPNs; however, more research is still required to further refine interferon therapy.


A review of what interferons are and how they are used in the treatment of the myeloproliferative neoplasms polycythemia vera, essential thrombocythemia, and primary myelofibrosis Why was this paper written? This paper was written to summarize the current clinical landscape of the use of interferons for the treatment of myeloproliferative neoplasms (MPN). What are interferons and how are they used in MPNs? Interferons are small proteins involved in cellular signaling that have been used to treat MPNs, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), for more than 35 years. They can have modulatory effects on the immune system and on the fundamental causes of disease. The use of interferons as treatment was initially limited due to difficulties with their administration and the potential for significant adverse effects. Many of these shortcomings were addressed by chemically binding a biocompatible polymer, polyethylene glycol (PEG), to the structure of the interferon, which increases the stability of the protein, prolongs the time during which it is active, and reduces negative effects to the immune system. The combined chemical structure of PEG and interferon (pegylated interferon or peginterferon) is recommended for use in the treatment of PV, ET, and PMF. What topics are discussed in this paper? In this review paper we evaluate the clinical effectiveness and safety of two available pegylated interferons, peginterferon alfa-2a (Pegasys) and ropeginterferon alfa-2b-njft (BESREMi) and discuss the practical clinical management of interferon-based therapies, along with the authors' opinions on whether to and how to switch therapy from hydroxyurea. Key topics and questions related to the use of interferons, such as their safety and tolerability, the significance of their effects on mutated cells, advantages of early treatment, and what the future of interferon therapy may look like, will be examined. What do the findings mean? Pegylated interferons represent an important therapeutic option for patients with MPNs; however, more research is still required to further refine interferon therapy.

7.
Blood Adv ; 8(6): 1515-1528, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38290135

ABSTRACT

ABSTRACT: Ruxolitinib reduces spleen volume, improves symptoms, and increases survival in patients with intermediate- or high-risk myelofibrosis. However, suboptimal response may occur, potentially because of signaling via the phosphoinositide 3-kinase (PI3K)/protein kinase B pathway. This phase 2 study evaluated dosing, efficacy, and safety of add-on PI3Kδ inhibitor parsaclisib for patients with primary or secondary myelofibrosis with suboptimal response to ruxolitinib. Eligible patients remained on a stable ruxolitinib dose and received add-on parsaclisib 10 or 20 mg, once daily for 8 weeks, and once weekly thereafter (daily-to-weekly dosing; n = 32); or parsaclisib 5 or 20 mg, once daily for 8 weeks, then 5 mg once daily thereafter (all-daily dosing; n = 42). Proportion of patients achieving a ≥10% decrease in spleen volume at 12 weeks was 28% for daily-to-weekly dosing and 59.5% for all-daily dosing. Proportions of patients achieving ≥50% decrease at week 12 in Myelofibrosis Symptom Assessment Form and Myeloproliferative Neoplasms Symptom Assessment Form symptom scores were 14% and 18% for daily-to-weekly dosing, and 28% and 32% for all-daily dosing, respectively. Most common nonhematologic treatment-emergent adverse events were nausea (23%), diarrhea (22%), abdominal pain and fatigue (each 19%), and cough and dyspnea (each 18%). New-onset grade 3 and 4 thrombocytopenia were observed in 19% of patients, each dosed daily-to-weekly, and in 26% and 7% of patients dosed all-daily, respectively, managed with dose interruptions. Hemoglobin levels remained steady. The addition of parsaclisib to stable-dose ruxolitinib can reduce splenomegaly and improve symptoms, with manageable toxicity in patients with myelofibrosis with suboptimal response to ruxolitinib. This trial was registered at www.clinicaltrials.gov as #NCT02718300.


Subject(s)
Nitriles , Primary Myelofibrosis , Pyrimidines , Pyrrolidines , Humans , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/chemically induced , Phosphatidylinositol 3-Kinases , Pyrazoles/adverse effects
8.
Nat Commun ; 14(1): 6895, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898613

ABSTRACT

Genomic profiling of hematologic malignancies has augmented our understanding of variants that contribute to disease pathogenesis and supported development of prognostic models that inform disease management in the clinic. Tumor only sequencing assays are limited in their ability to identify definitive somatic variants, which can lead to ambiguity in clinical reporting and patient management. Here, we describe the MSK-IMPACT Heme cohort, a comprehensive data set of somatic alterations from paired tumor and normal DNA using a hybridization capture-based next generation sequencing platform. We highlight patterns of mutations, copy number alterations, and mutation signatures in a broad set of myeloid and lymphoid neoplasms. We also demonstrate the power of appropriate matching to make definitive somatic calls, including in patients who have undergone allogeneic stem cell transplant. We expect that this resource will further spur research into the pathobiology and clinical utility of clinical sequencing for patients with hematologic neoplasms.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Neoplasms/genetics , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Mutation , High-Throughput Nucleotide Sequencing , DNA
9.
Blood ; 142(22): 1859-1870, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37729609

ABSTRACT

Polycythemia vera (PV) belongs to the BCR-ABL1-negative myeloproliferative neoplasms and is characterized by activating mutations in JAK2 and clinically presents with erythrocytosis, variable degrees of systemic and vasomotor symptoms, and an increased risk of both thromboembolic events and progression to myelofibrosis and acute myeloid leukemia (AML). Treatment selection is based on a patient's age and a history of thrombosis in patients with low-risk PV treated with therapeutic phlebotomy and aspirin alone, whereas cytoreductive therapy with either hydroxyurea or interferon alfa (IFN-α) is added for high-risk disease. However, other disease features such as significant disease-related symptoms and splenomegaly, concurrent thrombocytosis and leukocytosis, or intolerance of phlebotomy can constitute an indication for cytoreductive therapy in patients with otherwise low-risk disease. Additionally, recent studies demonstrating the safety and efficacy (ie, reduction in phlebotomy requirements and molecular responses) of ropegylated IFN-α2b support its use for patients with low-risk PV. Additionally, emerging data suggest that early treatment is associated with higher rates of molecular responses, which might eventually enable time-limited therapy. Nonetheless, longer follow-up is needed to assess whether molecular responses associate with clinically meaningful outcome measures such as thrombosis and progression to myelofibrosis or AML. In this article, we provide an overview of the current and evolving treatment landscape of PV and outline our vision for a patient-centered, phlebotomy-free, treatment approach using time-limited, disease-modifying treatment modalities early in the disease course, which could ultimately affect the natural history of the disease.


Subject(s)
Leukemia, Myeloid, Acute , Polycythemia Vera , Primary Myelofibrosis , Thrombocytosis , Thrombosis , Humans , Polycythemia Vera/complications , Polycythemia Vera/genetics , Polycythemia Vera/therapy , Primary Myelofibrosis/drug therapy , Thrombocytosis/therapy , Hydroxyurea/therapeutic use , Thrombosis/therapy , Thrombosis/chemically induced , Interferon-alpha/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Janus Kinase 2/genetics
10.
Am J Hematol ; 98(12): 1869-1876, 2023 12.
Article in English | MEDLINE | ID: mdl-37688521

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for patients with acute leukemia. Despite this, studies have shown that only a minority of patients ultimately proceed to allo-HCT. The primary objective of this prospective, observational study was to identify the rate of allo-HCT in patients for whom it was recommended, and reasons why patients deemed appropriate and eligible for HCT did not subsequently undergo transplant. Between April 2016 and April 2021, adult patients with newly diagnosed or relapsed/refractory acute leukemia were enrolled at the time of induction/reinduction therapy. Initial transplantation workup and allo-HCT recommendations were made during the early phase of induction/reinduction. Of the 307 enrolled patients, allo-HCT was recommended to 85% (n = 259), of whom 66% (n = 170) underwent transplant. Donor sources comprised 54% human leukocyte antigen (HLA)-matched unrelated donors, 20% HLA-matched sibling donors and HLA-mismatched graft sources with 15% umbilical cord blood units, 8% HLA-mismatched unrelated donors, and 4% HLA-haploidentical donors. The most common reason for transplant disqualification in the 89 patients in whom it was initially recommended was persistent/relapsed disease (70%), followed by early patient death (10%). In this prospective study, we report a high allo-HCT rate, which may be due to early transplant referral and workup. The main allo-HCT barrier was disease control, followed by early patient death. With the increasing availability of HLA-mismatched graft sources, the lack of donor availability was not a transplant barrier. Further development of novel transplant strategies for patients not achieving remission and improvements in induction regimens could result in increased allo-HCT utilization.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Prospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Unrelated Donors , Transplantation, Homologous , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/etiology , Acute Disease , HLA Antigens , Graft vs Host Disease/etiology , Retrospective Studies
11.
Ther Adv Hematol ; 14: 20406207231177282, 2023.
Article in English | MEDLINE | ID: mdl-37564898

ABSTRACT

Myeloproliferative neoplasms (MPNs) are a group of clonal hematologic malignancies that include polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF). MPNs are characterized by activating mutations in the JAK/STAT pathway and an increased risk of transformation to an aggressive form of acute leukemia, termed MPN-blast phase (MPN-BP). MPN-BP is characterized by the presence of ⩾20% blasts in the blood or bone marrow and is almost always preceded by an accelerated phase (MPN-AP) defined as ⩾10-19% blasts in the blood or bone marrow. These advanced forms of disease are associated with poor prognosis with a median overall survival (mOS) of 3-5 months in MPN-BP and 13 months in MPN-AP. MPN-AP/BP has a unique molecular landscape characterized by increased intratumoral complexity. Standard therapies used in de novo acute myeloid leukemia (AML) have not demonstrated improvement in OS. Allogeneic hematopoietic stem cell transplant (HSCT) remains the only curative therapy but is associated with significant morbidity and mortality and infrequently utilized in clinical practice. Therefore, an urgent unmet need persists for effective therapies in this advanced phase patient population. Here, we review the current management and future directions of therapy in MPN-AP/BP.

13.
Blood Adv ; 7(18): 5421-5432, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37530627

ABSTRACT

Janus kinase inhibitors (JAKis) ruxolitinib, fedratinib, and pacritinib are the current standard of care in symptomatic myelofibrosis (MF). However, progressive disease and toxicities frequently lead to JAKi discontinuation. Preclinical data indicate that combining JAK and bromodomain and extraterminal (BET) domain inhibition leads to overlapping effects in MF. Pelabresib (CPI-0610), an oral, small-molecule BET1,2 inhibitor (BETi), in combination with ruxolitinib showed improvements in spleen volume reduction (SVR35) and total symptom score reduction (TSS50) from baseline in the phase 2 MANIFEST study (NCT02158858) in patients with MF. Given the absence of a head-to-head clinical comparison between JAKi monotherapy and JAKi with BETi combination therapy, we performed an unanchored matching-adjusted indirect comparison analysis to adjust for differences between studies and allow for the comparison of SVR35, TSS50, and TSS measured at several timepoints in arm 3 of MANIFEST (pelabresib with ruxolitinib in JAKi treatment-naive patients with MF), with data from the following JAKi monotherapy studies in JAKi treatment-naive patients: COMFORT-I and COMFORT-II (ruxolitinib), SIMPLIFY-1 (ruxolitinib and momelotinib), and JAKARTA (fedratinib). Response rate ratios >1 were observed for pelabresib with ruxolitinib vs all comparators for SVR35 and TSS50 at week 24. Improvements in TSS were observed as early as week 12 and were durable. These results indicate that pelabresib with ruxolitinib may have a potentially higher efficacy than JAKi monotherapy in JAKi treatment-naive MF.


Subject(s)
Primary Myelofibrosis , Humans , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/diagnosis , Pyrimidines/therapeutic use , Nitriles/therapeutic use
14.
Br J Haematol ; 203(3): 389-394, 2023 11.
Article in English | MEDLINE | ID: mdl-37400251

ABSTRACT

Little is known about outcomes following interruption of targeted therapy in adult patients with histiocytic neoplasms. This is an IRB-approved study of patients with histiocytic neoplasms whose BRAF and MEK inhibitors were interrupted after achieving complete or partial response by 18-fluorodeoxyglucose positron emission tomography (FDG-PET). 17/22 (77%) of patients experienced disease relapse following treatment interruption. Achieving a complete response prior to interruption, having a mutation other than BRAFV600E, and receiving MEK inhibition only were each associated with a statistically significant improvement in relapse-free survival. Relapse is common following treatment interruption however some patients may be suitable for limited-duration treatment.


Subject(s)
Neoplasms , Adult , Humans , Positron-Emission Tomography , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases , Recurrence , Fluorodeoxyglucose F18 , Proto-Oncogene Proteins B-raf/genetics
15.
Clin Cancer Res ; 29(18): 3622-3632, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37439808

ABSTRACT

PURPOSE: Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by systemic symptoms, cytopenias, organomegaly, and bone marrow fibrosis. JAK2 inhibitors afford symptom and spleen burden reduction but do not alter the disease course and frequently lead to thrombocytopenia. TGFß, a pleiotropic cytokine elaborated by the MF clone, negatively regulates normal hematopoiesis, downregulates antitumor immunity, and promotes bone marrow fibrosis. Our group previously showed that AVID200, a potent and selective TGFß 1/3 trap, reduced TGFß1-induced proliferation of human mesenchymal stromal cells, phosphorylation of SMAD2, and collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PC) with wild-type JAK2 rather than JAK2V617F. PATIENTS AND METHODS: We conducted an investigator-initiated, multicenter, phase Ib trial of AVID200 monotherapy in 21 patients with advanced MF. RESULTS: No dose-limiting toxicity was identified at the three dose levels tested, and grade 3/4 anemia and thrombocytopenia occurred in 28.6% and 19.0% of treated patients, respectively. After six cycles of therapy, two patients attained a clinical benefit by IWG-MRT criteria. Spleen and symptom benefits were observed across treatment cycles. Unlike other MF-directed therapies, increases in platelet counts were noted in 81% of treated patients with three patients achieving normalization. Treatment with AVID200 resulted in potent suppression of plasma TGFß1 levels and pSMAD2 in MF cells. CONCLUSIONS: AVID200 is a well-tolerated, rational, therapeutic agent for the treatment of patients with MF and should be evaluated further in patients with thrombocytopenic MF in combination with agents that target aberrant MF intracellular signaling pathways.


Subject(s)
Myeloproliferative Disorders , Primary Myelofibrosis , Thrombocytopenia , Humans , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Janus Kinase 2/metabolism , Cytokines/therapeutic use , Immunologic Factors/therapeutic use , Thrombocytopenia/chemically induced
16.
Blood Adv ; 7(17): 5000-5013, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37142255

ABSTRACT

Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Prognosis , Risk Factors
17.
Leuk Lymphoma ; 64(6): 1063-1081, 2023 06.
Article in English | MEDLINE | ID: mdl-37081809

ABSTRACT

Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by splenomegaly, abnormal cytokine expression, cytopenias, and progressive bone marrow fibrosis. The disease often manifests with burdensome symptoms and is associated with reduced survival. Ruxolitinib, an oral Janus kinase (JAK) 1 and JAK2 inhibitor, was the first agent approved for MF. As a first-in-class targeted treatment, ruxolitinib approval transformed the MF treatment approach and remains standard of care. In addition, targeted inhibition of JAK1/JAK2 signaling, a key molecular pathway underlying MF pathogenesis, and the large volume of literature evaluating ruxolitinib, have led to a better understanding of the disease and improved management in general. Here we review ruxolitinib efficacy in patients with MF in the 10 years following approval, including demonstration of clinical benefit in the phase 3 COMFORT-I/II trials, real-world evidence, translational studies, and expanded access data. Lastly, future directions for MF treatment are discussed, including ruxolitinib-based combination therapies.


Subject(s)
Primary Myelofibrosis , Humans , Primary Myelofibrosis/drug therapy , Janus Kinase 2 , Nitriles/therapeutic use , Pyrimidines/therapeutic use , Treatment Outcome , Protein Kinase Inhibitors/therapeutic use
18.
J Clin Oncol ; 41(32): 4993-5004, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-36881782

ABSTRACT

PURPOSE: Standard therapy for myelofibrosis comprises Janus kinase inhibitors (JAKis), yet spleen response rates of 30%-40%, high discontinuation rates, and a lack of disease modification highlight an unmet need. Pelabresib (CPI-0610) is an investigational, selective oral bromodomain and extraterminal domain inhibitor (BETi). METHODS: MANIFEST (ClinicalTrails.gov identifier: NCT02158858), a global, open-label, nonrandomized, multicohort, phase II study, includes a cohort of JAKi-naïve patients with myelofibrosis treated with pelabresib and ruxolitinib. The primary end point is a spleen volume reduction of ≥ 35% (SVR35) at 24 weeks. RESULTS: Eighty-four patients received ≥ 1 dose of pelabresib and ruxolitinib. The median age was 68 (range, 37-85) years; 24% of patients were intermediate-1 risk, 61% were intermediate-2 risk, and 16% were high risk as per the Dynamic International Prognostic Scoring System; 66% (55 of 84) of patients had a hemoglobin level of < 10 g/dL at baseline. At 24 weeks, 68% (57 of 84) achieved SVR35, and 56% (46 of 82) achieved a total symptom score reduction of ≥ 50% (TSS50). Additional benefits at week 24 included 36% (29 of 84) of patients with improved hemoglobin levels (mean, 1.3 g/dL; median, 0.8 g/dL), 28% (16 of 57) with ≥ 1 grade improvement in fibrosis, and 29.5% (13 of 44) with > 25% reduction in JAK2V617F-mutant allele fraction, which was associated with SVR35 response (P = .018, Fisher's exact test). At 48 weeks, 60% (47 of 79) of patients had SVR35 response. Grade 3 or 4 toxicities seen in ≥ 10% patients were thrombocytopenia (12%) and anemia (35%), leading to treatment discontinuation in three patients. 95% (80 of 84) of the study participants continued combination therapy beyond 24 weeks. CONCLUSION: The rational combination of the BETi pelabresib and ruxolitinib in JAKi-naïve patients with myelofibrosis was well tolerated and showed durable improvements in spleen and symptom burden, with associated biomarker findings of potential disease-modifying activity.


Subject(s)
Janus Kinase Inhibitors , Primary Myelofibrosis , Humans , Aged , Janus Kinase Inhibitors/adverse effects , Primary Myelofibrosis/drug therapy , Protein Kinase Inhibitors/adverse effects , Nitriles/therapeutic use , Hemoglobins/therapeutic use , Janus Kinase 2/genetics , Treatment Outcome
19.
Blood ; 141(20): 2508-2519, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36800567

ABSTRACT

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Humans , Mice , Animals , Primary Myelofibrosis/pathology , Myeloproliferative Disorders/genetics , Signal Transduction , Neoplasms/complications , Cytokines/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
20.
Leukemia ; 37(2): 255-264, 2023 02.
Article in English | MEDLINE | ID: mdl-36434065

ABSTRACT

Myelofibrosis (MF) is a myeloproliferative disorder that exhibits considerable biological and clinical heterogeneity. At the two ends of the disease spectrum are the myelodepletive or cytopenic phenotype and the myeloproliferative phenotype. The cytopenic phenotype has a high prevalence in primary MF (PMF) and is characterized by low blood counts. The myeloproliferative phenotype is typically associated with secondary MF (SMF), mild anemia, minimal need for transfusion support, and normal to mild thrombocytopenia. Differences in somatic driver mutations and allelic burden, as well as the acquisition of non-driver mutations further influences these phenotypic differences, prognosis, and response to therapies such as JAK2 inhibitors. The outcome of patients with the cytopenic phenotype are comparatively worse and frequently pose a challenge to treat given the inherent exacerbation of cytopenias. Recent data indicate that an innate immune deregulated state that hinges on the myddosome-IRAK-NFκB axis favors the cytopenic myelofibrosis phenotype and offers opportunity for novel treatment approaches. We will review the biological and clinical features of the MF disease spectrum and associated treatment considerations.


Subject(s)
Myeloproliferative Disorders , Primary Myelofibrosis , Thrombocytopenia , Humans , Primary Myelofibrosis/genetics , Primary Myelofibrosis/therapy , Myeloproliferative Disorders/genetics , Prognosis , Phenotype , Janus Kinase 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...