Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 275(10): 6987-95, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10702262

ABSTRACT

We have used quinazoline inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase to study the link between EGFR signaling and G(1) to S traverse. Treatment of A431 and MDA-468 human tumor cells with 0.1-10 microM AG-1478 inhibited basal and ligand-stimulated EGFR phosphorylation without a decrease in receptor content, EGF-binding sites, or binding affinity. Incubation of A431 cells with 0.1-1 microM AG-1517 abrogated (125)I-EGF internalization. Both AG-1478 and AG-1517 markedly inhibited A431 and MDA-468 colony formation in soft agarose at concentrations between 0.01 and 1 microM. Daily injections of AG-1478 at 50 mg/kg delayed A431 tumor formation in athymic nude mice. A transient exposure of A431 cells to AG-1478 resulted in a dose-dependent up-regulation of the cyclin-dependent kinase inhibitor p27, down-regulation of cyclin D1 and of active MAPK, and hypophosphorylation of the retinoblastoma protein (Rb). These changes were temporally associated with recruitment of tumor cells in G(1) phase and a marked reduction of the proportion of cells in S phase. Upon removal of the kinase inhibitor, EGFR and Rb phosphorylation and the levels of cyclin D1 protein were quickly restored, but the cells did not reenter S phase until p27 protein levels were decreased. Phosphorothioate p27 oligonucleotides decreased p27 protein in A431 cells and abrogated the quinazoline-mediated G(1) arrest. Treatment of A431 cells with PD 098509, a synthetic inhibitor of MEK1, inhibited MAPK activity without inducing G(1) arrest or increasing the levels of p27. However, treatment with LY 294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited basal Akt activity, up-regulated p27, and recruited cells in G(1). These data suggest that p27 is required for the growth arrest that follows interruption of the EGFR kinase in receptor-overexpressing cells. In addition, the G(1) arrest and up-regulation of p27 resulting from EGFR blockade are not due to the interruption of MAPK, but to the interruption of constitutively active PI3K function.


Subject(s)
Cell Cycle Proteins , ErbB Receptors/antagonists & inhibitors , G1 Phase/drug effects , Microtubule-Associated Proteins/biosynthesis , Mitogen-Activated Protein Kinase Kinases/physiology , Tumor Suppressor Proteins , Animals , Cyclin D1/analysis , Cyclin-Dependent Kinase Inhibitor p27 , Female , Humans , Mice , Mice, Inbred BALB C , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Quinazolines/pharmacology , Retinoblastoma Protein/metabolism , Tyrphostins/pharmacology , Up-Regulation
2.
J Biol Chem ; 272(37): 23247-54, 1997 Sep 12.
Article in English | MEDLINE | ID: mdl-9287333

ABSTRACT

Receptor dimerization is critical for signaling by the epidermal growth factor receptor (EGFR) tyrosine kinase. This occurs after binding of the receptor's extracellular domain by ligand or bivalent antibodies. The role of other receptor domains in dimerization is less clear, and there are no examples of dimers induced by direct perturbation of the EGFR kinase domain. Submicromolar concentrations of AG-1478 and AG-1517, quinazolines specific for inhibition of the EGFR kinase, induced reversible receptor dimerization in vitro and in intact A431 cells. Consistent with the inhibitory effect of quinazolines on receptor kinase activity, the dimers formed lacked a detectable Tyr(P) signal. Quinazoline-induced EGFR dimerization was abrogated in vitro by ATP and the ATP analog adenyl-5'-yl imidodiphosphate. Receptors with a single-point mutation in the ATP binding site as well as wild-type EGFR with a covalent modification of the ATP site failed to dimerize in response to AG-1478 and AG-1517. These data suggest that EGFR dimerization can be induced by the interaction of quinazolines at the ATP site in the absence of receptor ligand binding. In SKBR-3 cells, the quinazolines induced the formation of inactive EGFR/ErbB-2 heterodimers, potentially sequestering ErbB-2 from interacting with other coreceptors of the ErbB family. Structural studies of the quinazoline interaction with the EGFR tyrosine kinase domain should allow for an analysis of receptor-specific chemical features required for binding to the ATP site and disruption of signaling, a strategy that can be perhaps applied to other tumor cell receptor systems.


Subject(s)
Adenosine Triphosphate/metabolism , Enzyme Inhibitors/metabolism , ErbB Receptors/metabolism , Neuregulin-1 , Quinazolines/metabolism , Quinazolines/pharmacology , Tyrphostins , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenylyl Imidodiphosphate/pharmacology , Binding Sites , Carrier Proteins/pharmacology , Dimerization , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/drug effects , Glycoproteins/pharmacology , Humans , Ligands , Nitriles/metabolism , Phosphorylation , Protein Binding , Protein Conformation/drug effects , Receptor, ErbB-2/metabolism , Signal Transduction , Tumor Cells, Cultured/drug effects
3.
J Biol Chem ; 272(13): 8296-302, 1997 Mar 28.
Article in English | MEDLINE | ID: mdl-9079651

ABSTRACT

We have studied the role of autocrine transforming growth factor-beta (TGF-beta) signaling on antiestrogen-mediated growth inhibition of hormone-dependent T47D and MCF-7 human breast carcinoma cells. Tamoxifen treatment increased the secretion of TGF-beta activity into serum-free cell medium and the cellular content of affinity cross-linked type I and III TGF-beta receptors in both cell lines. Anti-pan-TGF-beta antibodies did not block anti-estrogen-induced recruitment in G1 and inhibition of anchorage-dependent and -independent growth of both cell lines. Early passage MCF-7 cells, which exhibit detectable type II TGF-beta receptors at the cell surface and exquisite sensitivity to exogenous TGF-beta1, were transfected with a tetracycline-controllable dominant-negative TGF-betaRII (DeltaRII) construct. Although the TGF-beta1 response was blocked by removal of tetracycline in MCF-7/DeltaRII cells, tamoxifen-mediated suppression of Rb phosphorylation, recruitment in G1, and inhibition of cell proliferation were identical in the presence and absence of tetracycline. TGF-beta1 treatment up-regulated the Cdk inhibitor p21 and induced its association with Cdk2 in MCF-7 cells; these responses were blocked by the DeltaRII transgene product. In MCF-7 cells with a functional TGF-beta signaling pathway, tamoxifen did not up-regulate p21 nor did it induce association of p21 with Cdk2, suggesting alternative mechanisms for antiestrogen-mediated cytostasis. Finally, transfection of late-passage, TGF-beta1 unresponsive MCF-7 cells with high levels of TGF-betaRII restored TGF-beta1-induced growth inhibition but did not enhance tamoxifen response in culture. Taken together these data strongly argue against any role for TGF-beta signaling on tamoxifen-mediated growth inhibition of hormone-dependent breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , Estrogen Antagonists/pharmacology , Tamoxifen/pharmacology , Transforming Growth Factor beta/metabolism , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/metabolism , Enzyme Inhibitors/metabolism , Female , Humans , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/antagonists & inhibitors , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...