Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424270

ABSTRACT

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

2.
Elife ; 122023 03 23.
Article in English | MEDLINE | ID: mdl-36951533

ABSTRACT

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.


Subject(s)
Sarcopenia , Mice , Animals , Sarcopenia/pathology , Lipid Peroxides/metabolism , Reactive Oxygen Species/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Oxidative Stress
3.
Cells ; 11(11)2022 05 28.
Article in English | MEDLINE | ID: mdl-35681465

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people around the globe. Impaired neurogenesis is reported in AD as well as in AD animal models, although the underlying mechanism remains unclear. Elevated lipid peroxidation products are well-documented in AD. In current study, the role of lipid peroxidation on neural stem cell (NSCs) function is tested. Neural stem cells (NSCs) from 5×FAD mice, a widely used AD model with impaired neurogenesis, were observed to have increased levels of lipid reactive oxygen species compared to NSCs from control WT mice. 5×FAD NSCs exhibited altered differentiation potential as revealed by their propensity to differentiate into astrocytic lineage instead of neuronal lineage compared to WT NSCs. In addition, 5×FAD NSCs showed a reduced level of Gpx4, a key enzyme in reducing hydroperoxides in membrane lipids, and this reduction appeared to be caused by enhanced autophagy-lysosomal degradation of Gpx4 protein. To test if increasing Gpx4 could restore differentiation potential, NSCs from 5×FAD and Gpx4 double transgenic mice, i.e., 5×FAD/GPX4 mice were studied. Remarkably, upon differentiation, neuronal linage cells increased significantly in 5×FAD/GPX4 cultures compared to 5×FAD cultures. Taken together, the findings suggest that deficiency of lipid peroxidation defense contributes to functional decline of NSCs in AD.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Phospholipid Hydroperoxide Glutathione Peroxidase , Alzheimer Disease/metabolism , Animals , Flavin-Adenine Dinucleotide/metabolism , Humans , Mice , Mice, Transgenic , Neural Stem Cells/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
4.
Aging Cell ; 21(3): e13569, 2022 03.
Article in English | MEDLINE | ID: mdl-35199907

ABSTRACT

Age-related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle-specific overexpression of the mitochondrial H2 O2  scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2 O2 can prevent or delay the redox-dependent sarcopenia. Basal rates of H2 O2  generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross-sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild-type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle-specific PRDX3 overexpression reduces mitochondrial H2 O2  generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox-dependent sarcopenia.


Subject(s)
Sarcopenia , Aging , Animals , Disease Models, Animal , Hydrogen Peroxide/metabolism , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Oxidative Stress , Peroxiredoxin III/metabolism , Quality of Life , Sarcopenia/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
ACR Open Rheumatol ; 4(5): 441-446, 2022 May.
Article in English | MEDLINE | ID: mdl-35191223

ABSTRACT

OBJECTIVE: The study objective was to determine whether overexpression of the mitochondrial antioxidant peroxidase, peroxiredoxin 3 (Prx3), reduces the severity of osteoarthritis (OA) in mice. METHODS: Age-related OA (age 18 and 24 months) and OA induced by destabilization of the medial meniscus (DMM at age 6 months) were assessed in male mice that overexpress a human Prdx3 transgene encoding the Prx3 protein. Lox-stop-lox-Prdx3 (iPrdx3) mice were crossed with aggrecan-CreERT2 mice to produce iPrdx3AgCreERT2 or with Col2Cre to produce iPrdx3Col2Cre mice. Germline transgenics (Prdx3Tg) were also evaluated. Prx3 protein level was assessed by immunoblotting and functionally after induction of elevated mitochondrial hydrogen peroxide (H2 O2 ) using menadione. Histological sections of stifle joints were scored for cartilage damage (Articular Cartilage Structure score [ACS]), osteophytes, and synovial hyperplasia and were evaluated by histomorphometry. RESULTS: Overexpression of Prx3 maintained mitochondrial membrane integrity and inhibited p38 phosphorylation in the presence of elevated H2 O2 . ACS scores of 18-month-old iPrdx3AgCreERT2 mice (mean ± SD, 4.88 ± 5.05) were significantly lower than age-matched iPrdx3 controls (11.75 ± 6.34, P = 0.002) and trended lower in the 18-month Prdx3Tg group (P = 0.14), whereas no significant differences between experimental and control groups at 24 months of age or in OA induced by DMM surgery were noted. Osteophyte scores trended lower in the 18-month-old Prdx3Tg group (P = 0.09) and at 24 months in the iPrdx3Col2Cre mice (P = 0.05). There were no significant group differences in synovial hyperplasia or histomorphometric measures. CONCLUSION: Overexpression of the mitochondrial peroxidase Prx3 reduced the severity of age-related OA, but not at advanced ages and not in DMM-induced OA in younger mice.

6.
Neurotox Res ; 40(2): 373-383, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35043381

ABSTRACT

The degeneration and death of motor neurons lead to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Although the exact mechanism by which motor neuron degeneration occurs is not well understood, emerging evidence implicates the involvement of ferroptosis, an iron-dependent oxidative mode of cell death. We reported previously that treating Gpx4NIKO mice with tamoxifen to ablate the ferroptosis regulator glutathione peroxidase 4 (GPX4) in neurons produces a severe paralytic model resembling an accelerated form of ALS that appears to be caused by ferroptotic cell death of spinal motor neurons. In this study, in support of the role of ferroptosis in this model, we found that the paralytic symptoms and spinal motor neuron death of Gpx4NIKO mice were attenuated by a chemical inhibitor of ferroptosis. In addition, we observed that the paralytic symptoms of Gpx4NIKO mice were malleable and could be tapered by lowering the dose of tamoxifen, allowing for the generation of a mild paralytic model without a rapid onset of death. We further used both models to evaluate mitochondrial reactive oxygen species (mtROS) in the ferroptosis of spinal motor neurons and showed that overexpression of peroxiredoxin 3, a mitochondrial antioxidant defense enzyme, ameliorated symptoms of the mild but not the severe model of the Gpx4NIKO mice. Our results thus indicate that the Gpx4NIKO mouse is a versatile model for testing interventions that target ferroptotic death of spinal motor neurons in vivo.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cell Death/physiology , Mice , Motor Neurons/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase , Tamoxifen/metabolism , Tamoxifen/pharmacology
7.
Free Radic Biol Med ; 180: 1-12, 2022 02 20.
Article in English | MEDLINE | ID: mdl-34998934

ABSTRACT

Oxidative damage including lipid peroxidation is widely reported in Alzheimer's disease (AD) with the peroxidation of phospholipids in membranes being the driver of ferroptosis, an iron-dependent oxidative form of cell death. However, the importance of ferroptosis in AD remains unclear. This study tested whether ferroptosis inhibition ameliorates AD. 5xFAD mice, a widely used AD mouse model with cognitive impairment and robust neurodegeneration, exhibit markers of ferroptosis including increased lipid peroxidation, elevated lyso-phospholipids, and reduced level of Gpx4, the master defender against ferroptosis. To determine if enhanced defense against ferroptosis retards disease development, we generated 5xFAD mice that overexpress Gpx4, i.e., 5xFAD/GPX4 mice. Consistent with enhanced defense against ferroptosis, neurons from 5xFAD/GPX4 mice showed an augmented capacity to reduce lipid reactive oxygen species. In addition, compared with control 5xFAD mice, 5xFAD/GPX4 mice showed significantly improved learning and memory abilities and had reduced neurodegeneration. Moreover, 5xFAD/GPX4 mice exhibited attenuated markers of ferroptosis. Our results indicate that enhanced defense against ferroptosis is effective in ameliorating cognitive impairment and decreasing neurodegeneration of 5xFAD mice. The findings support the notion that ferroptosis is a key contributor to AD pathogenesis.


Subject(s)
Cognitive Dysfunction , Ferroptosis , Animals , Cognitive Dysfunction/genetics , Ferroptosis/genetics , Lipid Peroxidation , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species/metabolism
8.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Article in English | MEDLINE | ID: mdl-35031299

ABSTRACT

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Subject(s)
Crohn Disease , Enteritis , Fatty Acids, Omega-3 , Animals , Crohn Disease/drug therapy , Endoribonucleases , Enteritis/chemically induced , Enteritis/drug therapy , Fatty Acids, Unsaturated , Humans , Inflammation/drug therapy , Mice , Protein Serine-Threonine Kinases , Toll-Like Receptor 2
9.
Int J Obes (Lond) ; 46(5): 951-959, 2022 05.
Article in English | MEDLINE | ID: mdl-35031697

ABSTRACT

OBJECTIVES: Metabolic inflammation is a hallmark of obesity and related disorders, afflicting substantial morbidity and mortality to individuals worldwide. White visceral and subcutaneous adipose tissue not only serves as energy storage but also controls metabolism. Adipose tissue inflammation, commonly observed in human obesity, is considered a critical driver of metabolic perturbation while molecular hubs are poorly explored. Metabolic stress evoked by e.g. long-chain fatty acids leads to oxidative perturbation of adipocytes and production of inflammatory cytokines, fuelling macrophage infiltration and systemic low-grade inflammation. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation, accumulation of oxygen-specific epitopes and cell death, collectively referred to as ferroptosis. Here, we explore the function of adipocyte GPX4 in mammalian metabolism. METHODS: We studied the regulation and function of GPX4 in differentiated mouse adipocytes derived from 3T3-L1 fibroblasts. We generated two conditional adipocyte-specific Gpx4 knockout mice by crossing Gpx4fl/fl mice with Adipoq-Cre+ (Gpx4-/-AT) or Fabp4-Cre+ (Gpx4+/-Fabp4) mice. Both models were metabolically characterized by a glucose tolerance test and insulin resistance test, and adipose tissue lipid peroxidation, inflammation and cell death were assessed by quantifying oxygen-specific epitopes, transcriptional analysis of chemokines, quantification of F4/80+ macrophages and TUNEL labelling. RESULTS: GPX4 expression was induced during and required for adipocyte differentiation. In mature adipocytes, impaired GPX4 activity spontaneously evoked lipid peroxidation and expression of inflammatory cytokines such as TNF-α, interleukin 1ß (IL-1ß), IL-6 and the IL-8 homologue CXCL1. Gpx4-/-AT mice spontaneously displayed adipocyte hypertrophy on a chow diet, which was paralleled by the accumulation of oxygen-specific epitopes and macrophage infiltration in adipose tissue. Furthermore, Gpx4-/-AT mice spontaneously developed glucose intolerance, hepatic insulin resistance and systemic low-grade inflammation, when compared to wildtype littermates, which was similarly recapitulated in Gpx4+/-Fabp4 mice. Gpx4-/-AT mice exhibited no signs of adipocyte death. CONCLUSION: Adipocyte GPX4 protects against spontaneous metabolic dysregulation and systemic low-grade inflammation independent from ferroptosis, which could be therapeutically exploited in the future.


Subject(s)
Insulin Resistance , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Cytokines/metabolism , Diet, High-Fat , Epitopes/metabolism , Inflammation/metabolism , Mammals , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Oxygen/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase
10.
Orphanet J Rare Dis ; 16(1): 446, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34688299

ABSTRACT

BACKGROUND: Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4, with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potential diagnostic and therapeutic avenues for those suffering from this disease, though the steps toward these treatments is often convoluted, expensive, and time-consuming. MAIN BODY: The CureGPX4 organization was developed to promote awareness of GPX4-related diseases like SSMD, as well as support research that could lead to essential therapeutics for patients. We provide an overview of the 21 published SSMD cases and have compiled additional sequencing data for four previously unpublished individuals to illustrate the genetic component of SSMD, and the role of sequencing data in diagnosis. We outline in detail the steps CureGPX4 has taken to reach milestones of team creation, disease understanding, drug repurposing, and design of future studies. CONCLUSION: The primary aim of this review is to provide a roadmap for therapy development for rare, ultra-rare, and difficult to diagnose diseases, as well as increase awareness of the genetic component of SSMD. This work will offer a better understanding of GPx4-related diseases, and help guide researchers, clinicians, and patients interested in other rare diseases find a path towards treatments.


Subject(s)
Osteochondrodysplasias , Rare Diseases , Humans , Rare Diseases/genetics
11.
Sci Rep ; 11(1): 12890, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145375

ABSTRACT

Degeneration and death of motor neurons in Amyotrophic Lateral Sclerosis (ALS) are associated with increased lipid peroxidation. Lipid peroxidation is the driver of ferroptosis, an iron-dependent oxidative mode of cell death. However, the importance of ferroptosis in motor neuron degeneration of ALS remains unclear. Glutathione peroxidase 4 (Gpx4) is a key enzyme in suppressing ferroptosis by reducing phospholipid hydroperoxides in membranes. To assess the effect of increased protection against ferroptosis on motor neuron disease, we generated SOD1G93AGPX4 double transgenic mice by cross-breeding GPX4 transgenic mice with SOD1G93A mice, a widely used ALS mouse model. Compared with control SOD1G93A mice, both male and female SOD1G93AGPX4 mice had extended lifespans. SOD1G93AGPX4 mice also showed delayed disease onset and increased motor function, which were correlated with ameliorated spinal motor neuron degeneration and reduced lipid peroxidation. Moreover, cell toxicity induced by SOD1G93A was ameliorated by Gpx4 overexpression and by chemical inhibitors of ferroptosis in vitro. We further found that the anti-ferroptosis defense system in spinal cord tissues of symptomatic SOD1G93A mice and sporadic ALS patients might be compromised due to deficiency of Gpx4. Thus, our results suggest that ferroptosis plays a key role in motor neuron degeneration of ALS.


Subject(s)
Ferroptosis/genetics , Gene Expression , Motor Neuron Disease/etiology , Motor Neurons/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Biomarkers , Disease Models, Animal , Enzyme Activation , Gene Knockdown Techniques , Immunohistochemistry , Longevity , Mice , Mice, Transgenic , Motor Neuron Disease/diagnosis , Motor Neuron Disease/metabolism , Mutation , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/genetics
12.
Sci Rep ; 10(1): 13968, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811851

ABSTRACT

Defects in neuromuscular innervation contribute significantly to the age-related decline in muscle mass and function (sarcopenia). Our previous studies demonstrated that denervation induces muscle mitochondrial hydroperoxide production (H2O2 and lipid hydroperoxides (LOOHs)). Here we define the relative contribution of mitochondrial electron transport chain (ETC) derived H2O2 versus cytosolic phospholipase A2 (cPLA2) derived LOOHs in neurogenic muscle atrophy. We show that denervation increases muscle cPLA2 protein content, activity, and metabolites downstream of cPLA2 including LOOHs. Increased scavenging of mitochondrial H2O2 does not protect against denervation atrophy, suggesting ETC generated H2O2 is not a critical player. In contrast, inhibition of cPLA2 in vivo mitigates LOOH production and muscle atrophy and maintains individual muscle fiber size while decreasing oxidative damage. Overall, we show that loss of innervation in several muscle atrophy models including aging induces generation of LOOHs produced by arachidonic acid metabolism in the cPLA2 pathway contributing to loss of muscle mass.


Subject(s)
Lipid Peroxides/metabolism , Phospholipases A2/metabolism , Sarcopenia/therapy , Animals , Cytosol/metabolism , Electron Transport Chain Complex Proteins/metabolism , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Oxidative Stress/drug effects , Sarcopenia/metabolism
13.
Nat Commun ; 11(1): 1775, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286299

ABSTRACT

The increased incidence of inflammatory bowel disease (IBD) has become a global phenomenon that could be related to adoption of a Western life-style. Westernization of dietary habits is partly characterized by enrichment with the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which entails risk for developing IBD. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation (LPO) and cell death termed ferroptosis. We report that small intestinal epithelial cells (IECs) in Crohn's disease (CD) exhibit impaired GPX4 activity and signs of LPO. PUFAs and specifically AA trigger a cytokine response of IECs which is restricted by GPX4. While GPX4 does not control AA metabolism, cytokine production is governed by similar mechanisms as ferroptosis. A PUFA-enriched Western diet triggers focal granuloma-like neutrophilic enteritis in mice that lack one allele of Gpx4 in IECs. Our study identifies dietary PUFAs as a trigger of GPX4-restricted mucosal inflammation phenocopying aspects of human CD.


Subject(s)
Crohn Disease/metabolism , Dietary Fats/adverse effects , Enteritis/metabolism , Fatty Acids, Unsaturated/metabolism , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Adult , Animals , Cell Death/genetics , Cell Death/physiology , Crohn Disease/genetics , Enteritis/etiology , Enteritis/genetics , Fatty Acids, Unsaturated/genetics , Female , Glutathione Peroxidase/metabolism , Humans , Inflammation/genetics , Lipid Peroxidation/genetics , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
14.
Cell Host Microbe ; 24(1): 97-108.e4, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29937272

ABSTRACT

Sepsis is a life-threatening condition caused by pathogen infection and associated with pyroptosis. Pyroptosis occurs upon activation of proinflammatory caspases and their subsequent cleavage of gasdermin D (GSDMD), resulting in GSDMD N-terminal fragments that form membrane pores to induce cell lysis. Here, we show that antioxidant defense enzyme glutathione peroxidase 4 (GPX4) and its ability to decrease lipid peroxidation, negatively regulate macrophage pyroptosis, and septic lethality in mice. Conditional Gpx4 knockout in myeloid lineage cells increases lipid peroxidation-dependent caspase-11 activation and GSDMD cleavage. The resultant N-terminal GSDMD fragments then trigger macrophage pyroptotic cell death in a phospholipase C gamma 1 (PLCG1)-dependent fashion. Administration of the antioxidant vitamin E that reduces lipid peroxidation, chemical inhibition of PLCG1, or genetic Caspase-11 deletion or Gsdmd inactivation prevents polymicrobial sepsis in Gpx4-/- mice. Collectively, this study suggests that lipid peroxidation drives GSDMD-mediated pyroptosis and hence constitutes a potential therapeutic target for lethal infection.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Coinfection/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation/genetics , Pyroptosis/genetics , Sepsis/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Caspases/genetics , Caspases/metabolism , Caspases, Initiator , Disease Models, Animal , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , HL-60 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Leukocytes, Mononuclear/microbiology , Lipid Peroxidation/drug effects , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins , Phospholipid Hydroperoxide Glutathione Peroxidase , Pyroptosis/drug effects , Vitamin E/pharmacology
15.
Cell ; 171(2): 273-285, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985560

ABSTRACT

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Subject(s)
Cell Death , Animals , Apoptosis , Humans , Iron/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
16.
Redox Biol ; 12: 8-17, 2017 08.
Article in English | MEDLINE | ID: mdl-28212525

ABSTRACT

Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD); however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus) that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4), a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD.


Subject(s)
Cognitive Dysfunction/genetics , Glutathione Peroxidase/genetics , Neurodegenerative Diseases/genetics , Prosencephalon/metabolism , Animals , Cell Death , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Disease Models, Animal , Gene Knockout Techniques , Glutathione Peroxidase/metabolism , Lipid Peroxidation , Maze Learning , Mice , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase , Prosencephalon/cytology , Tamoxifen/adverse effects
17.
J Biol Chem ; 290(47): 28097-28106, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26400084

ABSTRACT

Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.


Subject(s)
Cell Death , Glutathione Peroxidase/genetics , Motor Neurons/pathology , Paralysis/enzymology , Animals , Glutathione Peroxidase/metabolism , Mice , Mice, Knockout , Motor Neurons/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology
18.
Neurobiol Aging ; 36(9): 2533-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26119225

ABSTRACT

Exposure to environmental toxins such as pesticides is implicated in increasing Alzheimer's disease risk. In this study, we investigated the long-term effects of paraquat exposure on cognition of Alzheimer's disease animal model APP/PS1 mice and wild-type (WT) mice. Our results showed that APP/PS1 mice had exacerbated cognition impairment and elevated Aß levels at 5 months after paraquat exposure, and that WT mice had cognition impairment at 5 and 16 months after paraquat exposure. In addition, increased mitochondrial oxidative stress and augmented brain inflammation were observed in both paraquat-exposed APP/PS1 mice and WT mice. Interestingly, activation of NLRP3 inflammasome, which triggers inflammation in response to mitochondrial stress, was enhanced in paraquat-exposed mice. Moreover, transgenic mice overexpressing Prdx3, a key enzyme in detoxifying mitochondrial H2O2, had suppressed NLRP3 inflammasome activation, reduced brain inflammation, and attenuated cognition impairment after paraquat exposure. Together, our results indicate that NLRP3 inflammasome activation induced by mitochondrial reactive oxygen species plays a key role in mediating paraquat-induced long-term cognition decline by elevating brain inflammation.


Subject(s)
Alzheimer Disease/complications , Carrier Proteins/metabolism , Cognition Disorders , Herbicides/toxicity , Mitochondria/drug effects , Paraquat/toxicity , Reactive Oxygen Species/metabolism , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cognition Disorders/chemically induced , Cognition Disorders/etiology , Cognition Disorders/pathology , Disease Models, Animal , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Humans , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Nerve Tissue Proteins/metabolism , Oxidative Stress/genetics , Presenilin-1/genetics , Presenilin-1/metabolism
19.
Neurobiol Aging ; 35(11): 2552-2561, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24906890

ABSTRACT

Increased mitochondrial hydrogen peroxide (H2O2) is associated with Alzheimer's disease and brain aging. Peroxiredoxin 3 (Prdx3) is the key mitochondrial antioxidant defense enzyme in detoxifying H2O2. To investigate the importance of mitochondrial H2O2 in age-associated cognitive decline, we compared cognition between aged (17-19 months) APP transgenic mice and APP/Prdx3 double transgenic mice (dTG) and between old (24 months) wild-type mice and Prdx3 transgenic mice (TG). Compared with aged APP mice, aged dTG mice showed improved cognition that was correlated with reduced brain amyloid beta levels and decreased amyloid beta production. Old TG mice also showed significantly increased cognitive ability compared with old wild-type mice. Both aged dTG mice and old TG mice had reduced mitochondrial oxidative stress and increased mitochondrial function. Moreover, CREB signaling, a signaling pathway important for cognition was enhanced in both aged dTG mice and old TG mice. Thus, our results indicate that mitochondrial H2O2 is a key culprit of age-associated cognitive impairment, and that a reduction of mitochondrial H2O2 could improve cognition by maintaining mitochondrial health and enhancing CREB signaling.


Subject(s)
Aging/psychology , Cognition Disorders/etiology , Cognition Disorders/genetics , Cognition/physiology , Hydrogen Peroxide/metabolism , Mitochondria/enzymology , Mitochondria/metabolism , Peroxiredoxin III/physiology , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cyclic AMP Response Element-Binding Protein/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Oxidative Stress , Signal Transduction/physiology
20.
Am J Physiol Endocrinol Metab ; 305(2): E254-62, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23695217

ABSTRACT

We have shown that oxidative stress is a mechanism of free fatty acid (FFA)-induced ß-cell dysfunction. Unsaturated fatty acids in membranes, including plasma and mitochondrial membranes, are substrates for lipid peroxidation, and lipid peroxidation products are known to cause impaired insulin secretion. Therefore, we hypothesized that mice overexpressing glutathione peroxidase-4 (GPx4), an enzyme that specifically reduces lipid peroxides, are protected from fat-induced ß-cell dysfunction. GPx4-overexpressing mice and their wild-type littermate controls were infused intravenously with saline or oleate for 48 h, after which reactive oxygen species (ROS) were imaged, using dihydrodichlorofluorescein diacetate in isolated islets, and ß-cell function was assessed ex vivo in isolated islets and in vivo during hyperglycemic clamps. Forty-eight-hour FFA elevation in wild-type mice increased ROS and the lipid peroxidation product malondialdehyde and impaired ß-cell function ex vivo in isolated islets and in vivo, as assessed by decreased disposition index. Also, islets of wild-type mice exposed to oleate for 48 h had increased ROS and lipid peroxides and decreased ß-cell function. In contrast, GPx4-overexpressing mice showed no FFA-induced increase in ROS and lipid peroxidation and were protected from the FFA-induced impairment of ß-cell function assessed in vitro, ex vivo and in vivo. These results implicate lipid peroxidation in FFA-induced ß-cell dysfunction.


Subject(s)
Fatty Acids, Nonesterified/toxicity , Glutathione Peroxidase/biosynthesis , Glutathione Peroxidase/physiology , Insulin-Secreting Cells/physiology , Animals , Blood Glucose/metabolism , Chemical and Drug Induced Liver Injury/pathology , Glucose Clamp Technique , Infusions, Intravenous , Insulin/blood , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/ultrastructure , Islets of Langerhans/enzymology , Islets of Langerhans/physiology , Lipid Peroxidation/physiology , Male , Membrane Lipids/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oleic Acids/toxicity , Phospholipid Hydroperoxide Glutathione Peroxidase , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...