Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Opt Express ; 32(6): 8496-8505, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571107

ABSTRACT

Flexibly wearable sensors are widely applied in health monitoring and personalized therapy. Multiple-node sensing is essential for mastering the health condition holistically. In this work, we report a multi-node wearable optical sensor (MNWOS) based on the cascade of microfiber Bragg gratings (µFBG), which features the reflective operation mode and ultra-compact size, facilitating the functional integration in a flexible substrate pad. The MNWOS can realize multipoint monitoring on physical variables, such as temperature and pressure, in both static and dynamic modes. Furthermore, the eccentric package configuration endows the MNWOS with the discernibility of bending direction in addition to the bending angle sensing. The multi-parameter sensing is realized by solving the sensing matrix that represents different sensitivity regarding the bending and temperature between FBGs. The MNWOS offers great prospect for the development of human-machine interfaces and medical and health detection.

2.
Animals (Basel) ; 14(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612353

ABSTRACT

Due to the fencing of the Przewalski's gazelle (Procapra przewalskii), the microcytic anemia incidence rate continues to increase. The primary pathological symptoms include emaciation, anemia, pica, inappetence, and dyskinesia. To investigate the cause of microcytic anemia ailment in the Przewalski's gazelle, the Upper Buha River Area with an excessive incidence was chosen as the experimental pasture, and the Bird Island Area without microcytic anemia disease was chosen as the control field. Then, the mineral contents in the soil, forage, blood, and liver, as well as the blood routine parameters and biochemical indexes were measured. The findings showed that the experimental pasture had much lower Se content in the soil and forage than the control field (p < 0.01), while the impacted pasture had significantly higher S content in the forage. The damaged gazelles had considerably lower Se and Cu contents and higher S content in the blood and liver than the healthy gazelles (p < 0.01). The presences of Hb, HCT, MCV, and MCH were significantly decreased compared to those in healthy gazelles (p < 0.01). The experimental group had a significantly lower level of GSH-Px activity in their serums compared to the control group (p < 0.01). In the treatment experiment, ten gazelles from the affected pasture were orally administered CuSO4, 6 g/animal once every 10 days for two consecutive times, and all gazelles were successfully cured. Therefore, it is possible that low Se content in the soil induced an increase in the absorption of S content by forage, leading to the deficiency of secondary Cu in the Przewalski's gazelles, resulting in microcytic anemia.

3.
Talanta ; 274: 125958, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574534

ABSTRACT

Hydrovoltaic is an emerging technology that aims to harvest energy from water flow and evaporation, in which the plasmonic hydrogen ions are generated by the interaction between water and hydrovoltaic device. However, the volume of the water sample for the interaction is usually ultra-small due to the compact size of hydrovoltaic device, making the quantification and characterization of the hydrogen ions in such water sample an elusive goal. To address this issue, a miniature fiber-optic pH probe is proposed using a unilaterally tapered-microfiber Bragg grating. The microfiber Bragg grating has an intrinsic Bragg reflection signal with a narrow linewidth. The fiber probe is functionalized by coating the sodium alginate, which can respond to the variation of pH mediated by the alteration of the hydrophilicity. The rigidity and robustness of microfiber Bragg grating facilitates the encapsulation of the sensor into a sampling capillary, allowing for the detection of trace aqueous sample less than 2 µL. The pH sensitivity of the tapered-µFBG-based sensor is 62.8 p.m./pH (R2 = 0.995) with a limit resolution of 0.096 pH. The sensor performed a practical application in the monitoring and characterization of the hydrovoltaic microdevice, which can generate microcurrent as soaked in the water. This work demonstrates a promising technology in the fields of materials, energy, biology and medicine, in which the detection of the microsamples is inevitable.

4.
Toxics ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668507

ABSTRACT

To investigate the mitigative effects of glycyrrhiza extract (GE) and curcumin (CUR) on the antioxidant and immune functions of the Guizhou black goat exposed to cadmium (Cd), 50 healthy Guizhou black goats (11.08 ± 0.22 kg, male, six months old) were used in a 60-day trial and were randomly assigned to five groups with 10 replicates per group, one goat per replicate. All goats were fed a basal diet, with drinking water and additives varying slightly between groups. Control group: tap water (0.56 µg·L-1 Cd); Cd group: drinking water containing Cd (20 mg Cd·kg-1·body weight, CdCl2·2.5H2O); GE group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE; CUR group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 CUR; combined group: drinking water containing Cd, at days 31 to 60, the basic diet had added 500 mg·kg-1 GE and CUR. Compared with the Cd group, GE and CUR significantly increased the levels of hemoglobin and red blood cell count in the blood, and the activities of serum antioxidant enzyme activity and immune function in the Guizhou black goat (p < 0.05). The treatment effect in the combined group was better than that in the GE and CUR groups. The results showed that GE and CUR improved the antioxidant and immune functions of the serum and livers of the Guizhou black goat and alleviated the toxicity damage of Cd contamination. This research has positive implications for both livestock management and human health.

5.
Biosens Bioelectron ; 249: 116014, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38219469

ABSTRACT

Pre-eclampsia is a serious multi-organ complication that severely threatens the safety of pregnant women and infants. To accurate and timely diagnose pre-eclampsia, point-of-care (POC) biosensing of the specific biomarkers is urgently required. However, one of the key biomarkers of pre-eclampsia, placental growth factor (PlGF), has a reduced level of expression in patients, which challenges the quantification capability and Limit-of-detection (LOD) of biosensors. Herein, we reported a microfiber Bragg grating biosensor for the quantification of PlGF in clinical serum samples. The Bragg grating was inscribed in a unilateral tapered fiber to generate the segmented Fabry-Perot spectrum for improving the capability of detection. Furthermore, a temperature-calibrated Bragg grating was added to enable dual parametric detection of PlGF and temperature simultaneously for removing the crosstalk. Finally, the biosensor was envisaged to be perfectly compatible with microfluidic chips, and thus dramatically reducing the sample consumption to as small as 10 µL. The proposed biosensor can respond to PlGF with concentrations ranging from 5 to 120 pg mL-1, attaining a LOD of 5 pg mL-1 of clinical relevance. More importantly, the biosensor achieved micro volume detection of clinical serum samples from patients, and the ROC curve with an AUC of 0.977 confirmed the viability of the device. Our study paves the way to a new idea for cost-effective and high-precision screening of patients with pre-eclampsia, and hence envisages a promising prospect for point-of-care (POC) diagnosis of patients with pre-eclampsia.


Subject(s)
Biosensing Techniques , Pre-Eclampsia , Pregnancy , Female , Humans , Pre-Eclampsia/diagnosis , Placenta Growth Factor , Point-of-Care Systems , Biomarkers
6.
Talanta ; 271: 125625, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38244308

ABSTRACT

The detection of trace cancer markers in body fluids such as blood/serum is crucial for cancer diseases screening and treatment, which requires high sensitivity and specificity of biosensors. In this study, a peanut structure cascaded lasso (PSCL) shaped fiber sensing probe based on fiber laser demodulation method was proposed to specifically detect the carcinoembryonic antigen related cell adhesion molecules 5 (CEACAM5) protein in serum. Thanks for the narrow linewidth and high signal-to-noise ratio (SNR) of the laser spectrum, it is easier to distinguish small spectral changes than interference spectrum. Adding the antibody modified magnetic microspheres (MMS) to form the sandwich structure of "antibody-antigen-antibody-MMS", and amplified the response caused by biomolecular binding. The limit of detection (LOD) for CEACAM5 in buffer could reach 0.11 ng/mL. Considering the common threshold of 5 ng/mL for CEA during medical screening and the cut off limit of 2.5 ng/mL for some kits, the LOD of proposed biosensor meets the actual needs. Human serum samples from a hospital were used to validate the real sensing capability of proposed biosensor. The deviation between the measured value in various serum samples and the clinical value ranged from 1.9 to 9.8 %. This sensing scheme holds great potential to serve as a point of care testing (POCT) device and extend to more biosensing applications.


Subject(s)
Arachis , Neoplasms , Humans , Microspheres , Cell Adhesion Molecules , Lasers , Magnetic Phenomena , Carcinoembryonic Antigen , GPI-Linked Proteins
7.
J Immunother ; 47(2): 33-48, 2024.
Article in English | MEDLINE | ID: mdl-37982646

ABSTRACT

Tumor-associated macrophages (TAMs) are highly infiltrated in the tumor microenvironment (TME) of colorectal cancer (CRC) and play a vital role in CRC's development as well as prognosis. The required data were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas. Univariate Cox regression and least absolute shrinkage operator analyses were executed for model construction. TME assessment and immune prediction were performed using the ESTIMATE software package and the single sample genome enrichment analysis algorithm. The results show patients with low a TAMs risk score (TRS) had a better prognosis in both The Cancer Genome Atlas and Gene Expression Omnibus cohorts. Patients with low TRS were more sensitive to 3 chemotherapeutic agents: oxaliplatin, paclitaxel, and cisplatin ( P <0.05). TME assessment showed that the low TRS group had less infiltration of M2 macrophages and regulatory T cells, but CD4 + T cells, NK cells, and dendritic cells occupy a greater proportion of TME. Low TRS group patients have a low StromalScore and ImmuneScore but have high TumorPurity. The immune checkpoint TIM-3 gene HAVCR2 expression was significantly higher in the high TRS group. Finally, we created a nomogram including TRS for forecasting survival, and TRS was significantly associated with the clinical stage of the patients. In conclusion, the TRS serves as a reliable prognostic indicator of CRC; it predicts patient outcomes to immunotherapy and chemotherapy and provides genomic evidence for the subsequent development of modulated TAMs for treating CRC.


Subject(s)
Macrophages , Neoplasms , Humans , Treatment Outcome , Tumor-Associated Macrophages , CD4-Positive T-Lymphocytes , Tumor Microenvironment , Prognosis
8.
Biosensors (Basel) ; 13(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37504073

ABSTRACT

Detection of trace tumor markers in blood/serum is essential for the early screening and prognosis of cancer diseases, which requires high sensitivity and specificity of the assays and biosensors. A variety of label-free optical fiber-based biosensors has been developed and yielded great opportunities for Point-of-Care Testing (POCT) of cancer biomarkers. The fiber biosensor, however, suffers from a compromise between the responsivity and stability of the sensing signal, which would deteriorate the sensing performance. In addition, the sophistication of sensor preparation hinders the reproduction and scale-up fabrication. To address these issues, in this study, a straightforward lasso-shaped fiber laser biosensor was proposed for the specific determination of carcinoembryonic antigen (CEA)-related cell adhesion molecules 5 (CEACAM5) protein in serum. Due to the ultra-narrow linewidth of the laser, a very small variation of lasing signal caused by biomolecular bonding can be clearly distinguished via high-resolution spectral analysis. The limit of detection (LOD) of the proposed biosensor could reach 9.6 ng/mL according to the buffer test. The sensing capability was further validated by a human serum-based cancer diagnosis trial, enabling great potential for clinical use. The high reproduction of fabrication allowed the mass production of the sensor and extended its utility to a broader biosensing field.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Biomarkers, Tumor , Optical Fibers , Neoplasms/diagnosis , Lasers , Carcinoembryonic Antigen , GPI-Linked Proteins
9.
Opt Express ; 31(10): 15674-15681, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157662

ABSTRACT

Fiber-optic devices working in the visible and near-infrared windows are attracting attention due to the rapid development of biomedicine that involves optics. In this work, we have successfully realized the fabrication of near-infrared microfiber Bragg grating (NIR-µFBG), which was operated at the wavelength of 785 nm, by harnessing the fourth harmonic order of Bragg resonance. The NIR-µFBG provided the maximum sensitivity of axial tension and bending to 211 nm/N and 0.18 nm/deg, respectively. By conferring the considerably lower cross-sensitivity, such as response to temperature or ambient refractive index, the NIR-µFBG can be potentially implemented as the highly sensitive tensile force and curve sensor.

10.
Sci Rep ; 13(1): 6382, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076545

ABSTRACT

Ten-eleven translocation protein 3 (TET3) is one of the key enzymes in DNA demethylation which can be expressed in liver tissues. However, the clinical value of TET3 for diagnosis and treatment of chronic liver disease have not been reported previously. We investigated the diagnostic accuracy of serum TET3 as a non-invasive screening tool for liver fibrosis. 212 patients with chronic liver disease from were enrolled in this study. Enzyme-linked immunosorbent assay was used to measure the serum levels of TET3. Receiver operating characteristics (ROC) were determined to examine the diagnostic accuracy of TET3 and combination model for diagnosis fibrosis. Serum TET3 level in fibrosis cases was significantly higher than that in non-fibrosis and controls, respectively. The areas under the ROC curve of the TET3 and fibrosis-4 index for liver fibrosis were 0.863 and 0.813, and 0.916 and 0.957 for liver cirrhosis. The combination of TET3 and fibrosis-4 index had a highly promising positive predictive value for detecting liver fibrosis and cirrhosis different stages of (93.5% and 100%) as compared with each diagnostic tool alone. TET3 is related to the development of liver fibrosis and cirrhosis. The TET3-fibrosis-4 model enhances discriminatory power and represents a promising non-invasive tool for the diagnosis and screening of liver fibrosis.


Subject(s)
Dioxygenases , Liver Cirrhosis , Humans , Biomarkers , Biopsy , Liver Cirrhosis/pathology , Liver/pathology , ROC Curve , Severity of Illness Index
11.
J Neurol ; 270(5): 2724-2733, 2023 May.
Article in English | MEDLINE | ID: mdl-36773060

ABSTRACT

BACKGROUND AND OBJECTIVE: Patients with idiopathic normal pressure hydrocephalus (iNPH) have a higher prevalence of hypertension and diabetes. However, the causal effects of these vascular risk factors on iNPH remain unclear. This study aimed to explore the causal relationship between vascular risk factors (VRFs) and iNPH. METHODS: We conducted the Mendelian randomization (MR) analysis of iNPH. We included nineteen vascular risk factors related to hypertension, diabetes, lipids, obesity, smoking, alcohol consumption, exercise, sleep, and cardiovascular events as exposure factors. We used the inverse-variance weighted method for causal effect estimation and weighted median, maximum likelihood, and MR Egger regression methods for sensitivity analyses. RESULTS: We found that genetically predicting essential hypertension (OR = 1.608 (1.330-1.944), p = 0.013) and increased sleep duration (OR = 16.395 (5.624-47.799), p = 0.009) were associated with higher odds of iNPH. Type 1 diabetes (OR = 0.869 (0.828-0.913), p = 0.004) was associated with lower odds of iNPH. For the other 16 VRFs, there was no evidence that they were significantly associated with iNPH. Sensitivity analyses showed that essential hypertension and type 1 diabetes were significantly associated with iNPH. CONCLUSION: In our MR study on VRFs and iNPH, we found essential hypertension to be a causal risk factor for iNPH. This suggests that hypertension may be involved in the pathophysiological mechanism of iNPH.


Subject(s)
Diabetes Mellitus, Type 1 , Hydrocephalus, Normal Pressure , Hypertension , Humans , Hydrocephalus, Normal Pressure/epidemiology , Hydrocephalus, Normal Pressure/genetics , Mendelian Randomization Analysis , Risk Factors , Hypertension/epidemiology , Hypertension/genetics , Essential Hypertension , Genome-Wide Association Study
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-1000526

ABSTRACT

Background and Objectives@#O-cyclic phytosphingosine-1-phosphate (cP1P) is a synthetic chemical and has a structure like sphingosine-1-phosphate (S1P). S1P is known to promote cell migration, invasion, proliferation, and anti-apoptosis through hippocampal signals. However, S1P mediated cellular-, molecular mechanism is still remained in the lung.Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are characterized by excessive immune response, increased vascular permeability, alveolar-peritoneal barrier collapse, and edema. In this study, we determined whether cP1P primed human dermal derived mesenchymal stem cells (hdMSCs) ameliorate lung injury and its therapeutic pathway in ALI mice. @*Methods@#and Results: cP1P treatment significantly stimulated MSC migration and invasion ability. In cytokine array, secretion of vascular-related factors was increased in cP1P primed hdMSCs (hdMSCcP1P ), and cP1P treatment induced inhibition of Lats while increased phosphorylation of Yap. We next determined whether hdMSCcP1P reduce inflammatory response in LPS exposed mice. hdMSCcP1P further decreased infiltration of macrophage and neutrophil, and release of TNF-α, IL-1β, and IL-6 were reduced rather than naïve hdMSC treatment. In addition, phosphorylation of STAT1 and expression of iNOS were significantly decreased in the lungs of MSCcP1P treated mice. @*Conclusions@#Taken together, these data suggest that cP1P treatment enhances hdMSC migration in regulation of Hippo signaling and MSCcP1P provide a therapeutic potential for ALI/ARDS treatment.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981464

ABSTRACT

Bombyx Batryticatus is a precious traditional Chinese animal drug commonly used in clinical practice in China, which has the effects of extinguishing wind, stopping convulsions, dispelling wind, relieving pain, resolving phlegm, and dissipating mass. The processing of Bombyx Batryticatus has a long history. As early as in the Liu Song period of the Southern and Northern Dynasties, there was a record of the processing of Bombyx Batryticatus with rice swill. In addition to the processing with bran, honey bran, and ginger juice, which are still used today, there are also processing methods such as rendering, flour processing, wine processing, salt processing, oil processing, charcoal, and red dates processing in ancient times. After processing, the fishy smell of Bombyx Batryticatus can be removed, and avoid nausea and vomiting caused by the direct taking. Furthermore, processing can also facilitate the removal of surface hairs and toxicity reduction, making the medicinal material crispy and easy to crush. Previous studies have shown that the main chemical constituents of Bombyx Batryticatus include protein polypeptides, sterols, and flavonoids, with anticonvulsant, anticoagulation, antithrombotic, anti-cancer, hypnotic, hypoglycemic, and other pharmacological effects. This paper reviewed the processing historical evolution, chemical constituents, and pharmacological effects of Bombyx Batryticatus to lay a foundation for the research on the processing mechanism, quality control, and active core substances of Bombyx Batryticatus.


Subject(s)
Animals , Bombyx , China , Evolution, Chemical , Flavonoids , Fruit
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-981134

ABSTRACT

There is a high incidence of chronic periapical periodontitis of deciduous teeth, however, there is a low incidence of the apical cyst. This paper reports a 7-year-old child with deciduous periodontitis caused by chronic periapical periodontitis of deciduous teeth. Through literature review, the etiology, imaging characteristics, diagnosis, differential diagnosis, and treatment methods were discussed to provide the basis for clinical diagnosis and treatment.


Subject(s)
Child , Humans , Cysts , Diagnosis, Differential , Periapical Periodontitis/therapy , Tooth, Deciduous
17.
Nat Commun ; 13(1): 7163, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418862

ABSTRACT

Polymer semiconductors are promising candidates for wearable and skin-like X-ray detectors due to their scalable manufacturing, adjustable molecular structures and intrinsic flexibility. Herein, we fabricated an intrinsically stretchable n-type polymer semiconductor through spatial nanoconfinement effect for ultrasensitive X-ray detectors. The design of high-orientation nanofiber structures and dense interpenetrating polymer networks enhanced the electron-transporting efficiency and stability of the polymer semiconductors. The resultant polymer semiconductors exhibited an ultrahigh sensitivity of 1.52 × 104 µC Gyair-1 cm-2, an ultralow detection limit of 37.7 nGyair s-1 (comparable to the record-low value of perovskite single crystals), and polymer film X-ray imaging was achieved at a low dose rate of 3.65 µGyair s-1 (about 1/12 dose rate of the commercial medical chest X-ray diagnosis). Meanwhile, the hybrid semiconductor films could sustain 100% biaxial stretching strain with minimal degeneracy in photoelectrical performances. These results provide insights into future high-performance, low-cost e-skin photoelectronic detectors and imaging.


Subject(s)
Polymers , Semiconductors , X-Rays , Polymers/chemistry , Radiography , Skin
18.
Opt Express ; 30(15): 26975-26987, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236879

ABSTRACT

A micro-nanostructure-based surface-modified fiber-optic sensor has been developed herein to selectively detect hydrogen peroxide (H2O2). In our design, phenylboronic ester-modified polymers were used as a modified cladding medium that allows chemo-optic transduction. Sensing is mechanistically based on oxidation and subsequent hydrolysis of the phenylboronic ester-modified polymer, which modulates hydrophobic properties of fiber-optic devices, which was confirmed during characterization of the chemical functional group and hydrophobicity of the active sensing material. This work illustrates a useful strategy of exploiting principles of chemical modifications to design surface-wettable fiber-optic sensing devices for detecting reactive species of broad relevance to biological and environmental analyses.


Subject(s)
Hydrogen Peroxide , Smart Materials , Esters , Fiber Optic Technology , Hydrogen Peroxide/analysis , Polymers/chemistry
19.
Opt Express ; 30(19): 34043-34052, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242426

ABSTRACT

Quantum-enhanced measurement technologies can unambiguously discriminate coherent states with accuracy beyond the classical heterodyne measurement. However, typical quantum-enhanced measurement scheme is vulnerable to the thermal noise, which will change the photon counting statistics of the coherent state. This paper presents a threshold-switching strategy that can discriminate quadrature phase-shift-keying coherent states with performance surpassing the typical quantum-enhanced scheme. In our scheme, photon number resolving detectors are used to switch the value of the threshold, which can mitigate the influence of thermal noise and other imperfections. Simulation results show that our scheme unambiguously discriminates the signal states with higher correct probability and the same error ratio compared with the typical scheme. Besides, this scheme can reduce the error ratio simultaneously for thermal noise N ≤ 0.2. The paper demonstrations that quantum-enhanced measurement with the threshold-switching strategy can adapt to different thermal noises by switching the value of the threshold under situations of different thermal noises and signal states.

20.
Opt Lett ; 47(8): 1941-1944, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427306

ABSTRACT

Improving sensitivity is critical for the higher-order harmonic fiber Bragg grating sensors. To this aim, in this work, we have successfully introduced the phase-shift into the third harmonic fiber Bragg grating for tailoring a double-dip spectrum with a high finesse notch. The dual dips showed reversed responses for the intensity regarding the change of the temperature or axial strain, enabling a highly sensitive measuring regime using the intensity contrast between the two dips. Deduced from the sinusoidal responding curves, the highest temperature and the axial strain sensitivity could reach 0.964 dB/°C, and 0.0257 dB/µ ε, three-fold times the other intensity-based fiber sensors. This work may promote the higher-order harmonic gratings into applications for enriching wavelength utilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...