Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Biotechnol ; 42(6): 931-952, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34641754

ABSTRACT

Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.


Subject(s)
Ammonia , Biofuels , Archaea , Methanol , Nitrites , Nitrosomonas/genetics , Oxidation-Reduction , Phylogeny
2.
Appl Phys A Mater Sci Process ; 127(8): 609, 2021.
Article in English | MEDLINE | ID: mdl-34305333

ABSTRACT

The effect of different annealing temperatures on structural, optical and magnetic properties of ZnFe2O4 nanoparticles prepared using the coprecipitation technique has been investigated. With the increase in annealing temperature, crystallinity and average crystallite size of nanoparticles increased. The average crystallite size was found to be 5.55 nm, 6.62 nm and 32.9 nm for the samples annealed at 300 °C, 500 °C and 700 °C, respectively. The X-ray diffraction and Fourier-transform infrared spectroscopy revealed the formation of a cubic spinel structure. The optical direct and indirect bandgap energy decreased with an increase in annealing temperature. The saturation magnetization increased from 16.38 emu/g to 25.91 emu/g. The M-H curves depicted the magnetic phase transition from superparamagnetic to ferrimagnetic. The electrical properties were investigated using an impedance analyzer in the frequency range of 300 Hz to 1 MHz. The conduction properties showed enhancement with increased annealing. The humidity sensing properties were investigated in the range of 15-90% RH and revealed a strong dependence of adsorption capacity on the annealing temperature. Electrical conductivity improved with increased humidity. Excellent humidity sensitivity was observed for ferrites annealed at 700 °C attributed to increased crystallinity and reduced lattice strain making them a potential candidate for use in humidity sensors.

5.
Sci Total Environ ; 687: 577-589, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31216511

ABSTRACT

A large population of the world is under increased health risk due to consumption of arsenic contaminated groundwater. The present study investigates the arsenic resistance and arsenic biotransforming ability in three bacterial species, namely Bacillus arsenicus, Rhodococcus sp. and Alcaligenes faecalis for employing them in potential groundwater bioremediation programmes. The tolerance to pH levels for the 3 organisms are 6-9 for A. faecalis, 5-10 for Rhodococcus and 5-9 for B. arsenicus. The arsenic bio-oxidation capacity was qualitatively confirmed by using the silver nitrate method and all three bacteria were able to convert arsenite to arsenate. The arsenite tolerance capacity (MIC values) were found to be 3 mM, 7 mM and 12 mM for B. arsenicus, A. faecalis and Rhodococcus sp. respectively. The changes in cellular morphology of these strains under various arsenic stress conditions were studied using advanced cell imaging techniques such as scanning electron microscopy and Atomic Force Microscopy. Rhodococcus sp. emerged as a potential candidate for bioremediation application. A response surface methodology was employed to optimize key parameters affecting arsenic removal (pH, Iron (II) soluble, concentration of humic acid and initial arsenic concentration) and at optimized conditions, experimental runs demonstrated 48.34% removal of As (III) (initial concentration = 500 µg/L) in a duration of 6 h, with complete removal after 48 h. Evidences from this work indicate that arsenic removal occurs through bioaccumulation, biotransformation and biosorption. The present study makes the first attempt to investigate the arsenic removal capability of Rhodococcus sp. in synthetic groundwater by employing bacterial whole cell assays. This study also sheds light on the arsenic tolerance and detoxification mechanisms employed by these bacteria, knowledge of which could be crucial in the successful implementation of in-situ bioremediation programmes.


Subject(s)
Arsenites/metabolism , Biotransformation , Rhodococcus/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
6.
J Nanosci Nanotechnol ; 12(8): 6355-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22962748

ABSTRACT

Nano particles of CoGdxFe(2-x)O4, with x = 0.0, 0.1, 0.3, 0.5 have been prepared by chemical co-precipitation method. The as synthesized particles are annealed at 300 degrees C for two hours to improve crystallinity. The X-ray diffraction patterns reveal the single cobalt ferrite phase formation and the average crystallite size decreases to 7 nm in the Gd3+ ion doped sample (with x = 0.5) compared to 27 nm in case of un-doped cobalt ferrite sample. The electrical properties for the different compositions of Gd3+ ion substituted cobalt ferrite material were studied in the frequency range 100 Hz to 10 MHz at room temperature using WK impedance analyzer. It is found that the electrical conductivity of the samples increases with increasing Gd3+ ion concentration. The results of our investigations reveal a strong dependence of material properties on Gd3+ ion doping.

SELECTION OF CITATIONS
SEARCH DETAIL