Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater Technol ; 9(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38645306

ABSTRACT

Single-cell genomics has revolutionized tissue analysis by revealing the genetic program of individual cells. The key aspect of the technology is the use of barcoded beads to unambiguously tag sequences originating from a single cell. The generation of unique barcodes on beads is mainly achieved by split-pooling methods, which are labor-intensive due to repeated washing steps. Towards the automation of the split-pooling method, we developed a simple method to magnetize hydrogel beads. We show that these hydrogel beads provide increased yields and washing efficiencies for purification procedures. They are also fully compatible with single-cell sequencing using the BAG-Seq workflow. Our work opens the automation of the split-pooling technique, which will improve single-cell genomic workflows.

2.
Genome Res ; 30(1): 49-61, 2020 01.
Article in English | MEDLINE | ID: mdl-31727682

ABSTRACT

We show the use of 5'-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples. We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes. As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.


Subject(s)
Acrylamide , Nucleic Acids , Single-Cell Analysis/methods , Acrylamide/chemistry , DNA , DNA Contamination , DNA Copy Number Variations , Gene Dosage , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Gene Library , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nucleic Acids/chemistry , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/standards , Polymerization , RNA , Single-Cell Analysis/standards
SELECTION OF CITATIONS
SEARCH DETAIL