Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Nanoscale ; 11(6): 2679-2686, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30534758

ABSTRACT

Morphology, dimensions, crystalline structure and compositions of nanomaterials are very critical in determining their unique characteristics. Here we report how the reducing agent concentration affects the surface morphology of copper nanowires and establish the optimized reaction conditions to synthesize high aspect ratio nanowires with a smooth surface. Also, reported is the magnetic field assisted technique to control the orientational and positional ordering of cupronickel nanowires (Cu/Ni NWs) on a large-scale area. A combination of magnetic field, surface derivatization and photolithographic techniques allowed self-assembly of Cu/Ni NWs into channels. The channel resistance as a function of the applied magnetic field during fabrication shows an anomalous decrease owing to the positional end-to-end alignment of NWs. Magnetic field and areal NW density dependence of NW sheet resistance in channels is presented and analyzed using scaling theoretical models.

2.
Langmuir ; 34(22): 6601-6611, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29715426

ABSTRACT

To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the Lγ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the Lγ phase. The cationic surfactant proteins inhibited Lγ structures, but at levels unlikely related to charge. Because the Lγ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the Lγ structures at high relative humidities, making their physiological significance uncertain.


Subject(s)
Phosphoproteins/chemistry , Pulmonary Surfactants/chemistry , Animals , Cattle , Phospholipids/chemistry , Spectrometry, X-Ray Emission
3.
J Vis Exp ; (120)2017 02 12.
Article in English | MEDLINE | ID: mdl-28287523

ABSTRACT

Nano-patterns fabricated with extreme ultraviolet (EUV) or electron-beam (E-beam) lithography exhibit unexpected variations in size. This variation has been attributed to statistical fluctuations in the number of photons/electrons arriving at a given nano-region arising from shot-noise (SN). The SN varies inversely to the square root of a number of photons/electrons. For a fixed dosage, the SN is larger in EUV and E-beam lithographies than for traditional (193 nm) optical lithography. Bottom-up and top-down patterning approaches are combined to minimize the effects of shot noise in nano-hole patterning. Specifically, an amino-silane surfactant self-assembles on a silicon wafer that is subsequently spin-coated with a 100 nm film of a PMMA-based E-beam photoresist. Exposure to the E-beam and the subsequent development uncover the underlying surfactant film at the bottoms of the holes. Dipping the wafer in a suspension of negatively charged, citrate-capped, 20 nm gold nanoparticles (GNP) deposits one particle per hole. The exposed positively charged surfactant film in the hole electrostatically funnels the negatively charged nanoparticle to the center of an exposed hole, which permanently fixes the positional registry. Next, by heating near the glass transition temperature of the photoresist polymer, the photoresist film reflows and engulfs the nanoparticles. This process erases the holes affected by SN but leaves the deposited GNPs locked in place by strong electrostatic binding. Treatment with oxygen plasma exposes the GNPs by etching a thin layer of the photoresist. Wet-etching the exposed GNPs with a solution of I2/KI yields uniform holes located at the center of indentations patterned by E-beam lithography. The experiments presented show that the approach reduces the variation in the size of the holes caused by SN from 35% to below 10%. The method extends the patterning limits of transistor contact holes to below 20 nm.


Subject(s)
Gold , Nanoparticles , Nanotechnology/methods , Photography/methods , Polymethyl Methacrylate/chemistry , Electrons , Photochemistry , Photons , Silicon , Static Electricity
4.
Biophys J ; 109(1): 95-105, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26153706

ABSTRACT

The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.


Subject(s)
Membranes, Artificial , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein C/chemistry , Models, Chemical , Surface Properties , Temperature
5.
Biophys J ; 104(3): 594-603, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23442910

ABSTRACT

The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure.


Subject(s)
Phospholipids/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactants/chemistry , Animals , Anions/chemistry , Cattle , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Scattering, Small Angle , X-Ray Diffraction
6.
Langmuir ; 28(48): 16596-604, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23140329

ABSTRACT

Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. Previous studies have shown that SP-B has a much greater effect than SP-C on adsorption. If the two proteins induce faster adsorption and formation of the bicontinuous structures by similar mechanisms, then they should also have different abilities to form the cubic phases. To test this hypothesis, we measured small-angle X-ray scattering on the individual proteins combined with POPE. SP-B replicated the dose-related ability of the combined proteins to induce the cubic phases at temperatures more than 25 °C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP-C, diffraction from cubic structures was either absent or present at very low intensities only with larger amounts of protein. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP-B promotes adsorption by facilitating formation of an inversely curved, rate-limiting structure.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Phosphatidylethanolamines/chemistry , Pulmonary Surfactant-Associated Protein B/chemistry , Pulmonary Surfactant-Associated Protein B/metabolism , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactant-Associated Protein C/metabolism , Animals , Cattle , Phosphatidylethanolamines/metabolism
7.
Langmuir ; 27(8): 4857-66, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21417351

ABSTRACT

Adsorption of pulmonary surfactant to an air-water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value.


Subject(s)
Pulmonary Surfactants/chemistry , Surface Tension , Adsorption , Animals , Cattle , Kinetics , Membrane Fusion , Proteins
8.
Solid State Electron ; 54(10): 1185-1191, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20711489

ABSTRACT

One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis[1, 2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junctions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev[3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO(3) that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost.

9.
Biophys J ; 98(8): 1549-57, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20409474

ABSTRACT

The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71 degrees C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57 degrees C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62 degrees C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Phosphatidylethanolamines/chemistry , Pulmonary Surfactant-Associated Protein B/pharmacology , Pulmonary Surfactant-Associated Protein C/pharmacology , Animals , Cattle , Temperature , X-Ray Diffraction
10.
Nanotechnology ; 21(3): 035708, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-19966386

ABSTRACT

This paper examines electrical transport properties and Li doping in SnO(2) synthesized by the sol-gel method. Solid-state (7)Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25-350 degrees C temperature range, follows an Efros-Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(rho) versus T(-1/2)) at temperatures below 100 degrees C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(rho) versus T(-1/3)) conduction at temperatures above 250 degrees C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

11.
J Phys Chem B ; 113(12): 3591-2, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19296697
12.
Nanotechnology ; 19(24): 245501, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-21825811

ABSTRACT

Thick film resistive Cl(2) sensors were fabricated using SnO(2) doped with Sb. The nanocrystalline powders of Sb-doped SnO(2) synthesized by a sol-gel method were compressed into an 800 µm thick pellet. The fabricated sensors were tested against gases like Cl(2), Br(2), HCl, NO, NO(2), CHCl(3), NH(3) and H(2). The highest response to Cl(2) was achieved in 0.1% Sb doping where an exposure to 3 ppm of Cl(2) gas led to a 500-fold increase in device resistance. The high sensitivity to Cl(2) is accompanied by minor interference due to other gases at room temperature. It was found that the SnO(2) doped with 0.1% Sb exhibited high response, selectivity (>100 in comparison to the gases described above) and short response time (∼60 s) to Cl(2) at 3 ppm level at room temperature.

13.
Biophys J ; 92(2): 493-501, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17056729

ABSTRACT

To determine how the hydrophobic surfactant proteins promote insertion of the surfactant lipids into an air/water interface, we measured the effect of lysophosphatidylcholine (LPC) on adsorption. Existing models contend that the proteins function either by disordering the lipids or by stabilizing a negatively curved structure located between the adsorbing vesicle and the interface. Because LPC produces greater disorder but positive curvature, the models predict opposite effects. With vesicles containing either dioleoyl phosphatidylcholine (DOPC) or the neutral and phospholipids isolated from calf surfactant, LPC increased the initial rate at which surface tension fell. The final surface tension, however, remained well above the value of approximately 25 mN/m expected for a saturated surface. With two preparations, dioleoyl phosphatidylethanolamine and gramicidin A-DOPC, which form the negatively curved hexagonal-II (H(II)) phase and adsorb rapidly, LPC instead had little effect on initial adsorption but delayed the fall of surface tension below approximately 30 mN/m. LPC produced a similar inhibition of the late adsorption for extracted calf surfactant. Unlike dioleoyl phosphatidylethanolamine and gramicidin A-DOPC, small-angle x-ray scattering and (31)P-nuclear magnetic resonance for extracted calf surfactant detected no evidence for the H(II) phase. Our results indicate that although LPC can promote the initial adsorption of vesicles containing only lamellar lipids, it inhibits the facilitation by the hydrophobic proteins of late adsorption. Our findings support a model in which the surfactant proteins accelerate adsorption by producing a focal tendency to stabilize a negatively curved kinetic intermediate without a general shift to the H(II) phase.


Subject(s)
Air , Liposomes/chemistry , Lysophosphatidylcholines/chemistry , Membrane Fluidity , Models, Chemical , Models, Molecular , Phospholipids/chemistry , Water/chemistry , Adsorption , Surface Properties
14.
Biochim Biophys Acta ; 1717(1): 41-9, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16242116

ABSTRACT

Prior studies suggest that the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of the lipids in pulmonary surfactant to an air-water interface by stabilizing a negatively curved rate-limiting structure that is intermediate between bilayer vesicles and the surface film. This model predicts that other peptides capable of stabilizing negative curvature should also promote lipid adsorption. Previous reports have shown that under appropriate conditions, gramicidin-A (GrA) induces dioleoyl phosphatidylcholine (DOPC), but not dimyristoyl phosphatidylcholine (DMPC), to form the negatively curved hexagonal-II (H(II)) phase. The studies reported here determined if GrA would produce the same effects on adsorption of DMPC and DOPC that the hydrophobic surfactant proteins have on the surfactant lipids. Small angle X-ray scattering and (31)P-nuclear magnetic resonance confirmed that at the particular conditions used to study adsorption, GrA induced DOPC to form the H(II) phase, but DMPC remained lamellar. Measurements of surface tension showed that GrA in vesicles produced a general increase in the rate of adsorption for both phospholipids. When restricted to the interface, however, in preexisting films, GrA with DOPC, but not with DMPC, replicated the ability of the surfactant proteins to promote adsorption of vesicles containing only the lipids. The correlation between the structural and functional effects of GrA with the two phospholipids, and the similar effects on adsorption of GrA with DOPC and the hydrophobic surfactant proteins with the surfactant lipids fit with the model in which SP-B and SP-C facilitate adsorption by stabilizing a rate-limiting intermediate with negative curvature.


Subject(s)
Air , Gramicidin/chemistry , Phospholipids/chemistry , Phospholipids/pharmacokinetics , Water/chemistry , Adsorption , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Liposomes/metabolism , Magnetic Resonance Spectroscopy , Phosphatidylcholines , Proteins/metabolism , Scattering, Radiation , Surface Properties , X-Ray Diffraction , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL