Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Public Health ; 11: 1215648, 2023.
Article in English | MEDLINE | ID: mdl-38222086

ABSTRACT

Background: Proper Healthcare Waste (HW) management is directly influenced by the knowledge and attitudes of Healthcare Professionals (HCP). However, studies that characterize the knowledge and practices of HCP on HW management are limited in Sri Lanka. This study was conducted to characterize the knowledge, perceptions and practices of HCP on the management of HW and to determine the risk factors influencing HW related occupational health hazards in the Colombo District of Sri Lanka. Methods: A total of 407 HCP were recruited as the study population from selected hospitals in the Colombo District. Information on socio-demographic factors, knowledge, attitudes and practices on HW management were gathered using an interviewer-administrated questionnaire. The Binary Logistic Regression (BLR) was used to determine the socio-economic risk factors associated with the occurrence of HW related health issues among the respondents. Results: The majority of respondents were characterized with a high knowledge level (76.9%) and positive attitudes (53.8%) on HW management. Incineration (82.6%) was recognized as the most widely used HW treatment method. Personal Protective Equipment (PPE) was used at a satisfactory level (85.5%), while liquid waste treatment was limited (57.5%). The occupational designation, level of training received in HW management, professional experience, vaccination status for tetanus, degree of knowledge and attitudes on HW management were recognized as significant risk factors (p < 0.05) associated with the occurrence of HW related occupational hazards. Conclusion: Even though, the treatment of HW was satisfactory, strengthening the existing mechanisms for monitoring of HW management, provisioning more resources and organizing training and awareness programmes on HW management for HCP are recommended.


Subject(s)
Occupational Health , Humans , Cross-Sectional Studies , Sri Lanka/epidemiology , Health Knowledge, Attitudes, Practice , Risk Factors
2.
Parasit Vectors ; 14(1): 433, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454583

ABSTRACT

BACKGROUND: The midgut microbiota of mosquitoes maintain basal immune activity and immune priming. In recent years, scientists have focused on the use of microbial communities for vector control interventions. In the present study, the midgut bacteria of larvae and adults of Aedes aegypti and Ae. albopictus were assessed using both field-collected and laboratory-reared mosquitoes from Sri Lanka. METHODS: Adults and larvae of Ae. aegypti and Ae. albopictus were collected from three selected areas in Gampaha Medical Officer of Health area, Gampaha District, Western Province, Sri Lanka. Bacterial colonies isolated from mosquito midgut dissections were identified by PCR amplification and sequencing of partial 16S rRNA gene fragments. RESULTS: Adults and larvae of Ae. aegypti and Ae. albopictus harbored 25 bacterial species. Bacillus endophyticus and Pantoea dispersa were found more frequently in field-collected Ae. aegypti and Ae. albopictus adults, respectively. The midgut bacteria of Ae. aegypti and Ae. albopictus adults (X2 = 556.167, df = 72, P < 0.001) and larvae (X2 = 633.11, df = 66, P < 0.001) were significantly different. There was a significant difference among the bacterial communities between field-collected adults (X2 = 48.974, df = 10, P < 0.001) and larvae (X2 = 84.981, df = 10, P < 0.001). Lysinibacillus sphaericus was a common species in adults and larvae of laboratory-reared Ae. aegypti. Only P. dispersa occurred in the field-collected adults of Ae. aegypti and Ae. albopictus. Species belonging to genera Terribacillus, Lysinibacillus, Agromyces and Kocuria were recorded from Aedes mosquitoes, in accordance with previously reported results. CONCLUSIONS: This study generated a comprehensive database on the culturable bacterial community found in the midgut of field-collected (Ae. aegypti and Ae. albopictus) and laboratory-reared (Ae. aegypti) mosquito larvae and adults from Sri Lanka. Data confirm that the midgut bacterial diversity in the studied mosquitoes varies according to species, developmental stage and strain (field vs laboratory).


Subject(s)
Aedes/microbiology , Bacteria/genetics , Gastrointestinal Microbiome , Genetic Variation , Larva/microbiology , Mosquito Vectors/microbiology , Aedes/classification , Animals , Bacteria/classification , Bacteria/isolation & purification , Female , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/microbiology , RNA, Ribosomal, 16S/genetics , Sri Lanka
3.
Biomed Res Int ; 2020: 8732473, 2020.
Article in English | MEDLINE | ID: mdl-33083488

ABSTRACT

BACKGROUND: Larval and adult mosquito stages harbor different extracellular microbes exhibiting various functions in their digestive tract including host-parasite interactions. Midgut symbiotic bacteria can be genetically exploited to express molecules within the vectors, altering vector competency and potential for disease transmission. Therefore, identification of mosquito gut inhabiting microbiota is of ample importance before developing novel vector control strategies that involve modification of vectors. METHOD: Adult mosquitoes of Culex tritaeniorhynchus, Culex gelidus, and Mansonia annulifera were collected from selected Medical Officer of Health (MOH) areas in the Gampaha district of Sri Lanka. Midgut lysates of the field-caught non-blood-fed female mosquitoes were cultured in Plate Count Agar medium, and Prokaryotic 16S ribosomal RNA partial genes of the isolated bacteria colonies were amplified followed by DNA sequencing. Diversity indices were used to assess the diversity and richness of the bacterial isolates in three mosquito species. The distribution pattern of bacterial isolates between different mosquito species was assessed by Distance-Based Redundancy Analysis (dbRDA). RESULTS: A total of 20 bacterial species (Staphylococcus pasteuri, Bacillus megaterium, Staphylococcus cohnii, Pantoea dispersa, Staphylococcus chromogenes, Bacillus aquimaris, Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus warneri, Moraxella osloensis, Enterobacter sp., Klebsiella michiganensis, Staphylococcus hominis, Staphylococcus saprophyticus, Streptomyces sp., Bacillus niacin, Cedecea neteri, Micrococcus luteus, Lysinibacillus sphaericus, and Bacillus licheniformis) were identified. All of these species belonged to three phyla, Proteobacteria, Firmicutes, and Actinobacteria, out of which phylum Firmicutes (71.1%) was the most prominent. The least number of species was recorded from Actinobacteria. The relative distribution of midgut microbes in different mosquito species differed significantly among mosquito species (Chi-square, χ 2 = 486.091; df = 36; P ≤ 0.001). Midgut microbiota of Cx. tritaeniorhynchus and Cx. gelidus indicated a similarity of 21.51%, while Ma. annulifera shared a similarity of 6.92% with the cluster of above two species. The gut microbiota of Cx. tritaeniorhynchus was also significantly more diverse and more evenly distributed compared to Ma. annulifera. Simpson's diversity, Margalef's diversity, and Menhinick's diversity indices were higher in Cx. gelidus. Of the recorded species, P. dispersa and strains of nonpathogenic species in Bacillaceae family (B. megaterium, B. niacini, B. licheniformis, and L. sphaericus) can be recommended as potential candidates for paratransgenesis. CONCLUSION: The relative distribution of midgut microbes in different mosquito species differed significantly among the three studied adult mosquito species. The present data strongly encourage further investigations to explore the potential usage of these microbes through paratransgenic approach for novel eco-friendly vector control strategies.


Subject(s)
Bacteria, Aerobic/genetics , Culicidae/microbiology , Gastrointestinal Microbiome/genetics , Animals , Bacteria/classification , Bacteria/genetics , Bacteria, Aerobic/isolation & purification , Bacteriological Techniques , Culex/microbiology , Female , Sri Lanka
4.
J Trop Med ; 2020: 7915035, 2020.
Article in English | MEDLINE | ID: mdl-32934657

ABSTRACT

Some arbovirus infections, especially dengue, have increased rapidly over the last few decades in Sri Lanka. Prevalence and distribution of different mosquito species have been limitedly documented, which remains grossly inadequate in providing evidence for potential health risks. In this study, the diversity and species composition of mosquitoes in four selected districts in Sri Lanka (Kurunegala, Gampaha, Kegalle, and Kandy) were investigated. Entomological surveys were conducted from a total of 160 temporary and permanent mosquito breeding habitats identified in the study area from June 2017 to October 2018. Mosquito immature stages were sampled using standard dipping, siphoning, or pipetting methods and identified up to the species level. Percentage relative abundance and habitat characteristics such as species richness, dominance, and Shannon-Weiner diversity were calculated for each surveyed habitat type. Associations between co-occurring species were estimated by Hulbert's coefficient of interspecific association (C8). A total of 4663 mosquito larvae belonging to seven genera and fifteen species of mosquitoes were collected. The relative distribution of mosquito species differed significantly among the four studied districts (X 2 = 143.248; df = 33; P < 0.001). According to Kruskal-Wallis statistics (P < 0.05 at 95% of significance), all diversity indices for immature stages of medically important mosquitoes varied significantly across different breeding sites. Paddy fields had the significantly highest species richness of 4.0 ± 2.82. The coefficients of interspecific association among all the recorded medically important vector mosquitoes were found negative during the present study. The findings of the current study would be useful to identify the entomological potential for disease transmission and facilitate the implementation of appropriate vector control interventions. This would ultimately provide an avenue to improve the personal skills of health staff rather than limiting their knowledge to specified disease vectors, under which the control program is concerned.

SELECTION OF CITATIONS
SEARCH DETAIL
...