Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Pac J Cancer Prev ; 25(1): 351-363, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285803

ABSTRACT

OBJECTIVE: Clerodendrum infortunatum L. has long been used in traditional medicine in Sri Lanka for tumours, cancer, and certain skin diseases. The present study aimed to assess the anticancer properties of the aqueous extract of C. infortunatum L. root (AECIR) through the activation of the apoptotic pathway on hepatocellular carcinoma (HepG2) and thus give it a scientific validation. Further, the contribution of polyphenols in antioxidant activity and cell cytotoxicity was investigated. METHODS: Powdered plant material was boiled with water (100°C) to obtained AECIR.  The DPPH assay was used to determine the antioxidant potential. The activity of AECIR on HepG2 and normal rat fibroblast (CC1) cell growth was determined using MTT assay. The morphological changes related to apoptotic pathway was examined by Ethidium Bromide/Acridine Orange (EB/AO), Rhodamine 123 (Rh123) and DNA fragmentation assay. RESULTS: The AECIR demonstrated antioxidant potential with an EC50 of 350.2 ± 1.5 ug/mL for DPPH assay. The HO•, H2O2 and •NO free radical scavenging activity was observed with EC50 of 19.7 ± 2.3, 11.7 ± 0.1 and 273.1 ± 0.9 ug/mL, respectively. The antiproliferative effect of AECIR on HepG2 cells was observed in a time and dose dependent manner with an EC50 of 239.1 ± 1.3 µg/mL while CC1 cells showed a nontoxic effect with an EC50 1062.7 ± 3.4 µg/mL after 24hrs treatment. A significant decrease in antioxidant activity (p<0.001) and 90% HepG2 cell viability was observed with polyphenol removed AECIR compared to the polyphenol present AECIR. The EB/AO uptake, depletion of mitochondrial transmembrane potential, and DNA fragmentation assay results revealed that the apoptosis was induced by AECIR. CONCLUSION: The obtained result of the present study demonstrates that the antioxidant potential and antiproliferative activity of AECIR is attributed to the presence of polyphenols. Furthermore, the findings provide the scientific base for anti-cancer potential of AECIR.


Subject(s)
Carcinoma, Hepatocellular , Clerodendrum , Liver Neoplasms , Animals , Rats , Humans , Carcinoma, Hepatocellular/drug therapy , Polyphenols/pharmacology , Antioxidants/pharmacology , Hep G2 Cells , Hydrogen Peroxide , Plant Extracts/pharmacology , Plant Extracts/chemistry , Liver Neoplasms/drug therapy , Cell Proliferation , Apoptosis
2.
Int J Anal Chem ; 2017: 7230145, 2017.
Article in English | MEDLINE | ID: mdl-29201056

ABSTRACT

Polyphenols are secondary metabolites of plants, which are responsible for prevention of many diseases. Polyvinylpolypyrrolidone (PVPP) has a high affinity towards polyphenols. This method involves the use of PVPP column to remove polyphenols under centrifugal force. Standards of gallic acid, epigallocatechin gallate, vanillin, and tea extracts (Camellia sinensis) were used in this study. PVPP powder was packed in a syringe with different quantities. The test samples were layered over the PVPP column and subjected to centrifugation. Supernatant was tested for the total phenol content. The presence of phenolic compounds and caffeine was screened by HPLC and measuring the absorbance at 280. The antioxidant capacity of standards and tea extracts was compared with the polyphenol removed fractions using DPPH scavenging assay. No polyphenols were found in polyphenolic standards or tea extracts after PVPP treatment. The method described in the present study to remove polyphenols is simple, inexpensive, rapid, and efficient and can be employed to investigate the contribution of polyphenols present in natural products to their biological activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...