Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 182: 106151, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37172910

ABSTRACT

In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-ß (Aß) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aß-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.


Subject(s)
Alzheimer Disease , Interneurons , Sleep , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Hippocampus/metabolism , Interneurons/metabolism , Mice, Transgenic , Parvalbumins/metabolism , Prefrontal Cortex/metabolism
2.
Cells ; 11(21)2022 10 29.
Article in English | MEDLINE | ID: mdl-36359822

ABSTRACT

Astrocytes contribute to glutamatergic signalling, which is required for hypoglycaemia counterregulation and is impaired by recurrent insulin-induced hypoglycaemia. This study examined the glutamate response of astrocytes when challenged with acute and recurrent low glucose (RLG) exposure. The metabolic responses of cortical (CRTAS) and hypothalamic (HTAS) primary rat astrocytes were measured in acute and recurrent low glucose using extracellular flux analyses. RLG caused mitochondrial adaptations in both HTAS and CRTAS, many of which were attenuated by glutamate exposure during low glucose (LG) treatments. We observed an increase in capacity of HTAS to metabolise glutamine after RLG exposure. Demonstrating astrocytic heterogeneity in the response to LG, CRTAS increased cellular acidification, a marker of glycolysis in LG, whereas this decreased in HTAS. The directional change in intracellular Ca2+ levels of each cell type, correlated with the change in extracellular acidification rate (ECAR) during LG. Further examination of glutamate-induced Ca2+ responses in low glucose treated CRTAS and HTAS identified sub-populations of glucose-excited- and glucose-inhibited-like cells with differing responses to glutamate. Lastly, release of the gliotransmitter ATP by HTAS was elevated by RLG, both with and without concurrent glutamate exposure. Therefore, hypothalamic astrocytes adapt to RLG by increasing glutamate uptake and oxidation in a manner that prevents RLG-induced mitochondrial adaptations.


Subject(s)
Glutamic Acid , Hypoglycemia , Rats , Animals , Glutamic Acid/metabolism , Astrocytes/metabolism , Glucose/pharmacology , Glucose/metabolism , Mitochondria/metabolism
3.
J Neurosci ; 42(37): 7094-7109, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35927034

ABSTRACT

The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of ß (20-30 Hz) oscillations (ß bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of ß bursts. Additionally, θ-α/ß cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during ß bursts. Finally, excessive ß bursting was seen in J20 mice, including increased ß bursting during novelty and familiarity, yet a loss of coupling between ß bursts and spiking activity. These findings support the concept that ß bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of ß oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive ß bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of ß bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.


Subject(s)
Alzheimer Disease , Gyrus Cinguli , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Gyrus Cinguli/physiology , Hippocampus/physiology , Male , Mice , Neurons/physiology , Spatial Memory/physiology
4.
eNeuro ; 9(2)2022.
Article in English | MEDLINE | ID: mdl-35228313

ABSTRACT

We assessed similarities and differences in the electrographic signatures of local field potentials (LFPs) evoked by different pharmacological agents in zebrafish larvae. We then compared and contrasted these characteristics with what is known from electrophysiological studies of seizures and epilepsy in mammals, including humans. Ultimately, our aim was to phenotype neurophysiological features of drug-induced seizures in larval zebrafish for expanding knowledge on the translational potential of this valuable alternative to mammalian models. LFPs were recorded from the midbrain of 4-d-old zebrafish larvae exposed to a pharmacologically diverse panel of seizurogenic compounds, and the outputs of these recordings were assessed using frequency domain analysis. This included analysis of changes occurring within various spectral frequency bands of relevance to mammalian CNS circuit pathophysiology. From these analyses, there were clear differences in the frequency spectra of drug-exposed LFPs, relative to controls, many of which shared notable similarities with the signatures exhibited by mammalian CNS circuits. These similarities included the presence of specific frequency components comparable to those observed in mammalian studies of seizures and epilepsy. Collectively, the data presented provide important information to support the value of larval zebrafish as an alternative model for the study of seizures and epilepsy. These data also provide further insight into the electrophysiological characteristics of seizures generated in nonmammalian species by the action of neuroactive drugs.


Subject(s)
Epilepsy , Zebrafish , Animals , Brain , Larva/physiology , Mammals , Seizures
5.
Br J Pharmacol ; 178(13): 2671-2689, 2021 07.
Article in English | MEDLINE | ID: mdl-33768524

ABSTRACT

BACKGROUND AND PURPOSE: Functional brain imaging using genetically encoded Ca2+ sensors in larval zebrafish is being developed for studying seizures and epilepsy as a more ethical alternative to rodent models. Despite this, few data have been generated on pharmacological mechanisms of action other than GABAA antagonism. Assessing larval responsiveness across multiple mechanisms is vital to test the translational power of this approach, as well as assessing its validity for detecting unwanted drug-induced seizures and testing antiepileptic drug efficacy. EXPERIMENTAL APPROACH: Using light-sheet imaging, we systematically analysed the responsiveness of 4 days post fertilisation (dpf; which are not considered protected under European animal experiment legislation) transgenic larval zebrafish to treatment with 57 compounds spanning more than 12 drug classes with a link to seizure generation in mammals, alongside eight compounds with no such link. KEY RESULTS: We show 4dpf zebrafish are responsive to a wide range of mechanisms implicated in seizure generation, with cerebellar circuitry activated regardless of the initiating pharmacology. Analysis of functional connectivity revealed compounds targeting cholinergic and monoaminergic reuptake, in particular, showed phenotypic consistency broadly mapping onto what is known about neurotransmitter-specific circuitry in the larval zebrafish brain. Many seizure-associated compounds also exhibited altered whole brain functional connectivity compared with controls. CONCLUSIONS AND IMPLICATIONS: This work represents a significant step forward in understanding the translational power of 4dpf larval zebrafish for use in neuropharmacological studies and for studying the events driving transition from small-scale pharmacological activation of local circuits, to the large network-wide abnormal synchronous activity associated with seizures.


Subject(s)
Brain , Zebrafish , Animals , Brain/diagnostic imaging , Functional Neuroimaging , Larva , Seizures/chemically induced , Seizures/drug therapy
6.
Autophagy ; 17(4): 855-871, 2021 04.
Article in English | MEDLINE | ID: mdl-32286126

ABSTRACT

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Subject(s)
Autophagy , Cell Culture Techniques , Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Mitophagy , Autophagy/drug effects , Autophagy/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Gene Expression Regulation/drug effects , Growth Cones/drug effects , Growth Cones/ultrastructure , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mesencephalon/cytology , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Mitophagy/genetics , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Time Factors
7.
Elife ; 92020 11 26.
Article in English | MEDLINE | ID: mdl-33242304

ABSTRACT

Dementia is associated with severe spatial memory deficits which arise from dysfunction in hippocampal and parahippocampal circuits. For spatially sensitive neurons, such as grid cells, to faithfully represent the environment these circuits require precise encoding of direction and velocity information. Here, we have probed the firing rate coding properties of neurons in medial entorhinal cortex (MEC) in a mouse model of tauopathy. We find that grid cell firing patterns are largely absent in rTg4510 mice, while head-direction tuning remains largely intact. Conversely, neural representation of running speed information was significantly disturbed, with smaller proportions of MEC cells having firing rates correlated with locomotion in rTg4510 mice. Additionally, the power of local field potential oscillations in the theta and gamma frequency bands, which in wild-type mice are tightly linked to running speed, was invariant in rTg4510 mice during locomotion. These deficits in locomotor speed encoding likely severely impact path integration systems in dementia.


Subject(s)
Entorhinal Cortex/cytology , Grid Cells/physiology , Motor Activity/physiology , Periodicity , Tauopathies/pathology , Animals , Entorhinal Cortex/physiology , Mice
8.
Neurobiol Aging ; 88: 1-10, 2020 04.
Article in English | MEDLINE | ID: mdl-32065917

ABSTRACT

Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials. Re neurons recorded from J20 mice did not exhibit increased action potential generation in response to depolarizing current stimuli but an increased propensity to rebound burst following hyperpolarizing current stimuli. Increased rebound firing did not appear to result from alterations to T-type Ca2+ channels. Finally, in J20 mice, there was an ~8% reduction in spike width, similar to what has been reported in CA1 pyramidal neurons from multiple amyloidopathy mice. We conclude that alterations to the intrinsic properties of Re neurons may contribute to hippocampal-thalmo-cortical hyperexcitability observed under pathological beta-amyloid load.


Subject(s)
Alzheimer Disease/etiology , Alzheimer Disease/physiopathology , Midline Thalamic Nuclei/physiopathology , Action Potentials , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Calcium Channels/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Hippocampus/physiopathology , Male , Membrane Potentials , Mice, Inbred C57BL , Mice, Transgenic , Patch-Clamp Techniques , Thalamus/physiopathology
9.
Neurobiol Stress ; 10: 100143, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30937349

ABSTRACT

The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic brain region which plays a key role in stress, anxiety, and anxiety-related disorders. Human females have an increased susceptibility to anxiety-related disorders, however the physiological basis of this is not fully understood. Here we examined the effect of the oestrous cycle and sex on the electrophysiological properties of Type I and Type II cells in the anterolateral area of the BNST (BNSTALG) in unstressed animals. There was no significant effect of oestrous cycle on any of the parameters examined in either cell type. Compared to males, the female cohort had lower capacitance in Type I cells while having a higher capacitance in Type II cells. Type II cells also displayed decreased excitability in the female cohort. In order to confirm the effect of these populations on stress and anxiety, a correlation with behaviour on the elevated zero maze was carried out. We observed that increased excitability in Type II neurons correlated with a decrease in anxiety-like behaviour. These sex-specific differences in excitability may contribute to altered susceptibility to anxiety-related disorders.

10.
Neurochem Res ; 44(3): 617-626, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29484523

ABSTRACT

Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tauP301L. We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.


Subject(s)
Long-Term Synaptic Depression/physiology , Memory/physiology , Neuronal Plasticity/physiology , Perirhinal Cortex/physiopathology , Receptors, Muscarinic/metabolism , Alzheimer Disease/physiopathology , Animals , Depression/physiopathology , Disease Models, Animal , Mice, Transgenic , Perirhinal Cortex/metabolism , Synaptic Transmission/physiology
11.
Diabetologia ; 62(1): 187-198, 2019 01.
Article in English | MEDLINE | ID: mdl-30293112

ABSTRACT

AIMS/HYPOTHESIS: Hypoglycaemia is a major barrier to good glucose control in type 1 diabetes. Frequent hypoglycaemic episodes impair awareness of subsequent hypoglycaemic bouts. Neural changes underpinning awareness of hypoglycaemia are poorly defined and molecular mechanisms by which glial cells contribute to hypoglycaemia sensing and glucose counterregulation require further investigation. The aim of the current study was to examine whether, and by what mechanism, human primary astrocyte (HPA) function was altered by acute and recurrent low glucose (RLG). METHODS: To test whether glia, specifically astrocytes, could detect changes in glucose, we utilised HPA and U373 astrocytoma cells and exposed them to RLG in vitro. This allowed measurement, with high specificity and sensitivity, of RLG-associated changes in cellular metabolism. We examined changes in protein phosphorylation/expression using western blotting. Metabolic function was assessed using a Seahorse extracellular flux analyser. Immunofluorescent imaging was used to examine cell morphology and enzymatic assays were used to measure lactate release, glycogen content, intracellular ATP and nucleotide ratios. RESULTS: AMP-activated protein kinase (AMPK) was activated over a pathophysiologically relevant glucose concentration range. RLG produced an increased dependency on fatty acid oxidation for basal mitochondrial metabolism and exhibited hallmarks of mitochondrial stress, including increased proton leak and reduced coupling efficiency. Relative to glucose availability, lactate release increased during low glucose but this was not modified by RLG. Basal glucose uptake was not modified by RLG and glycogen levels were similar in control and RLG-treated cells. Mitochondrial adaptations to RLG were partially recovered by maintaining euglycaemic levels of glucose following RLG exposure. CONCLUSIONS/INTERPRETATION: Taken together, these data indicate that HPA mitochondria are altered following RLG, with a metabolic switch towards increased fatty acid oxidation, suggesting glial adaptations to RLG involve altered mitochondrial metabolism that could contribute to defective glucose counterregulation to hypoglycaemia in diabetes.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Fatty Acids/metabolism , Glucose/pharmacology , AMP-Activated Protein Kinases/metabolism , Adolescent , Cell Line , Cells, Cultured , Humans , Hypoglycemia/metabolism , Immunoblotting , Lipid Metabolism/drug effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction/drug effects
12.
Sci Rep ; 8(1): 15903, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30349014

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

13.
Aging Cell ; 17(4): e12795, 2018 08.
Article in English | MEDLINE | ID: mdl-29943484

ABSTRACT

Despite pain prevalence altering with age, the effects of aging on the properties of nociceptors are not well understood. Nociceptors, whose somas are located in dorsal root ganglia, are frequently divided into two groups based on their ability to bind isolectin B4 (IB4). Here, using cultured neurons from 1-, 3-, 5-, 8-, 12-, and 18-month-old mice, we investigate age-dependent changes in IB4-positive and IB4-negative neurons. Current-clamp experiments at physiological temperature revealed nonlinear changes in firing frequency of IB4-positive, but not IB4-negative neurons, with a peak at 8 months. This was likely due to the presence of proexcitatory conductances activated at depolarized membrane potentials and significantly higher input resistances found in IB4-positive neurons from 8-month-old mice. Repetitive firing in nociceptors is driven primarily by the TTX-resistant sodium current, and indeed, IB4-positive neurons from 8-month-old mice were found to receive larger contributions from the TTX-resistant window current around the resting membrane potential. To further address the mechanisms behind these differences, we performed RNA-seq experiments on IB4-positive and IB4-negative neurons from 1-, 8-, and 18-month-old mice. We found a larger number of genes significantly affected by age within the IB4-positive than IB4-negative neurons from 8-month-old mice, including known determinants of nociceptor excitability. The above pronounced age-dependent changes at the cellular and molecular levels in IB4-positive neurons point to potential mechanisms behind the reported increase in pain sensitivity in middle-aged rodents and humans, and highlight the possibility of targeting a particular group of neurons in the development of age-tailored pain treatments.


Subject(s)
Cellular Senescence/genetics , Glycoproteins/metabolism , Muscle Fibers, Skeletal/metabolism , Nociceptors/metabolism , Animals , Cells, Cultured , Gene Expression Regulation/genetics , Glycoproteins/genetics , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/cytology , Muscle Weakness/genetics , Nociceptors/cytology
14.
Pflugers Arch ; 470(9): 1359-1376, 2018 09.
Article in English | MEDLINE | ID: mdl-29797067

ABSTRACT

Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , KCNQ1 Potassium Channel/metabolism , Neurons/metabolism , Up-Regulation/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Humans , Membrane Potentials/physiology , Mice , RNA, Messenger/metabolism
15.
J Physiol ; 596(11): 2251-2266, 2018 06.
Article in English | MEDLINE | ID: mdl-29604046

ABSTRACT

KEY POINTS: The medial entorhinal cortex (mEC) has an important role in initiation and propagation of seizure activity. Several anatomical relationships exist in neurophysiological properties of mEC neurons; however, in the context of hyperexcitability, previous studies often considered it as a homogeneous structure. Using multi-site extracellular recording techniques, ictal-like activity was observed along the dorso-ventral axis of the mEC in vitro in response to various ictogenic stimuli. This originated predominantly from ventral areas, spreading to dorsal mEC with a surprisingly slow velocity. Modulation of inhibitory tone was capable of changing the slope of ictal initiation, suggesting seizure propagation behaviours are highly dependent on levels of GABAergic function in this region. A distinct disinhibition model also showed, in the absence of inhibition, a prevalence for interictal-like initiation in ventral mEC, reflecting the intrinsic differences in mEC neurons. These findings suggest the ventral mEC is more prone to hyperexcitable discharge than the dorsal mEC, which may be relevant under pathological conditions. ABSTRACT: The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organization of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 µm s-1 ), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by differential levels of GABAergic control since increasing (diazepam) or decreasing (Ro19-4603) GABAA receptor activation, respectively, reduced or increased the slope of ictal initiation. The observation that ictal activity is predominately generated in ventral mEC was replicated using a separate 0-Mg2+ model of epileptiform activity in vitro. By using a distinct disinhibition model (co-application of kainate and picrotoxin) we show that additional physiological features (for example intrinsic properties of mEC neurons) still produce a prevalence for interictal-like initiation in ventral mEC. These findings suggest that the ventral mEC is more likely to initiate hyperexcitable discharges than the dorsal mEC, and that seizure propagation is highly dependent on levels of GABAergic expression across the mEC.


Subject(s)
Action Potentials , Entorhinal Cortex/physiopathology , Neural Inhibition , Neural Pathways/physiopathology , Seizures/physiopathology , Animals , Cells, Cultured , Male , Mice , Mice, Inbred C57BL
16.
Analyst ; 143(4): 850-857, 2018 Feb 12.
Article in English | MEDLINE | ID: mdl-29230441

ABSTRACT

Recent work using micro-Fourier transform infrared (µFTIR) imaging has revealed that a lipid-rich layer surrounds many plaques in post-mortem Alzheimer's brain. However, the origin of this lipid layer is not known, nor is its role in the pathogenesis of Alzheimer's disease (AD). Here, we studied the biochemistry of plaques in situ using a model of AD. We combined FTIR, Raman and immunofluorescence images, showing that astrocyte processes co-localise with the lipid ring surrounding many plaques. We used µFTIR imaging to rapidly measure chemical signatures of plaques over large fields of view, and selected plaques for higher resolution analysis with Raman microscopy. Raman maps showed similar lipid rings and dense protein cores as in FTIR images, but also revealed cell bodies. We confirmed the presence of plaques using amylo-glo staining, and detected astrocytes using immunohistochemistry, revealing astrocyte co-localisation with lipid rings. This work is important because it correlates biochemical changes surrounding the plaque with the biological process of astrogliosis.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Lipids/analysis , Plaque, Amyloid/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Animals , Brain/diagnostic imaging , Immunohistochemistry , Male , Mice , Mice, Transgenic , Spectroscopy, Fourier Transform Infrared
17.
Glia ; 66(1): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28722234

ABSTRACT

Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline. The aim of the present study was to investigate whether hypoperfusion impairs the functional integrity of white matter, its relation with axon-glial integrity and microglial number, and whether by targeting microglia these effects can be improved. We show that in response to increasing durations of hypoperfusion, the conduction velocity of myelinated fibres in the corpus callosum is progressively reduced and that paranodal and internodal axon-glial integrity is disrupted. The number of microglial cells increases in response to hypoperfusion and correlates with disrupted paranodal and internodal integrity and reduced conduction velocities. Further minocycline, a proposed anti-inflammatory and microglia inhibitor, restores white matter function related to a reduction in the number of microglia. The study suggests that microglial activation contributes to the structural and functional alterations of myelinated axons induced by cerebral hypoperfusion and that dampening microglia numbers/proliferation should be further investigated as potential therapeutic benefit in cerebral vascular disease.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Carotid Stenosis , Gliosis/drug therapy , Gliosis/etiology , Microglia/drug effects , Minocycline/therapeutic use , White Matter/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arginase/genetics , Arginase/metabolism , Axons/pathology , Carotid Stenosis/complications , Carotid Stenosis/drug therapy , Carotid Stenosis/pathology , Corpus Callosum/drug effects , Corpus Callosum/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred C57BL , Myelin-Associated Glycoprotein/metabolism , Nerve Fibers/drug effects , Nerve Fibers/physiology , White Matter/pathology , White Matter/physiology
18.
Neurobiol Aging ; 60: 44-56, 2017 12.
Article in English | MEDLINE | ID: mdl-28917666

ABSTRACT

The accumulation of cleaved tau fragments in the brain is associated with several tauopathies. For this reason, we recently developed a transgenic mouse that selectively accumulates a C-Terminal 35 kDa human tau fragment (Tau35). These animals develop progressive motor and spatial memory impairment, paralleled by increased hippocampal glycogen synthase kinase 3ß activity. In this neurophysiological study, we focused on the CA1 subfield of the hippocampus, a brain area involved in memory encoding. The accumulation of Tau35 results in a significant increase of short-term facilitation of the synaptic response in the theta frequency range (10 Hz), without affecting basal synaptic transmission and long-term synaptic plasticity. Tau35 expression also alters the intrinsic excitability of CA1 pyramidal neurons. Thus, Tau35 presence is associated with increased and decreased excitability at hyperpolarized and depolarized potentials, respectively. These observations are paralleled by a hyperpolarization of the voltage-sensitivity of noninactivating K+ currents. Further investigation is needed to assess the causal link between such functional alterations and the cognitive and motor impairments previously observed in this model.


Subject(s)
CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , tau Proteins/metabolism , Alzheimer Disease/etiology , Animals , CA1 Region, Hippocampal/enzymology , Cognition , Dementia/etiology , Glycogen Synthase Kinase 3 beta/metabolism , Memory Disorders/genetics , Mice, Transgenic , Motor Activity , Neuronal Plasticity , Psychomotor Disorders/genetics , Spatial Memory , Supranuclear Palsy, Progressive/etiology , Synaptic Transmission
19.
Sci Rep ; 7(1): 6581, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28747660

ABSTRACT

Functional neuroimaging, using genetically-encoded Ca2+ sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.


Subject(s)
Brain/drug effects , Brain/diagnostic imaging , Convulsants/administration & dosage , Functional Neuroimaging/methods , Animals , Spatio-Temporal Analysis , Zebrafish
20.
Cell Rep ; 18(13): 3063-3068, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355559

ABSTRACT

Synapse loss is a key feature of dementia, but it is unclear whether synaptic dysfunction precedes degenerative phases of the disease. Here, we show that even before any decrease in synapse density, there is abnormal turnover of cortical axonal boutons and dendritic spines in a mouse model of tauopathy-associated dementia. Strikingly, tauopathy drives a mismatch in synapse turnover; postsynaptic spines turn over more rapidly, whereas presynaptic boutons are stabilized. This imbalance between pre- and post-synaptic stability coincides with reduced synaptically driven neuronal activity in pre-degenerative stages of the disease.


Subject(s)
Synapses/pathology , Tauopathies/pathology , Animals , Axons/metabolism , Cerebral Cortex/pathology , Dendritic Spines/metabolism , Male , Mice, Transgenic , Presynaptic Terminals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...