Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Elife ; 102021 01 08.
Article in English | MEDLINE | ID: mdl-33416497

ABSTRACT

Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-ß signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-ß signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-ß responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-ß-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.


Subject(s)
Arachnodactyly/genetics , Craniosynostoses/genetics , DNA-Binding Proteins/genetics , Marfan Syndrome/genetics , Mutation , Proto-Oncogene Proteins/genetics , Transforming Growth Factor beta/genetics , DNA-Binding Proteins/metabolism , Female , Humans , Male , Proto-Oncogene Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
2.
Dev Biol ; 421(2): 161-170, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27919666

ABSTRACT

Hensen's node is the "organizer" of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity.


Subject(s)
Bone Morphogenetic Proteins/antagonists & inhibitors , Calreticulin/metabolism , Embryonic Induction , Nerve Tissue/embryology , Nerve Tissue/metabolism , Organizers, Embryonic/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Calnexin/metabolism , Chickens , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/metabolism , HEK293 Cells , Humans , Neural Plate/embryology , Neural Plate/metabolism , Signal Transduction , Solubility
3.
Chemistry ; 21(9): 3613-27, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25533475

ABSTRACT

Three related series of peri-substituted bis(tellurides) bearing naphthalene, acenaphthene and acenaphthylene backbones (Nap/Acenap/Aceyl(TeY)2 (Nap = naphthalene-1,8-diyl N; Acenap = acenaphthene-5,6-diyl A; Aceyl = acenaphthylene-5,6-diyl Ay; Y = Ph 1; Fp 2; Tol 3; An-p- 4; An-o- 5; Tp 6; Mes 7; Tip 8) have been synthesised and their solid-state structures determined by X-ray crystallography. Molecular conformations were classified as a function of the two C9-C-Te-C(Y) dihedral angles (θ); in the solid all members adopt AB or CCt configurations, with larger Te(aryl) moieties exclusively imposing the CCt variant. Exceptionally large J((125)Te,(125)Te) spin-spin coupling constants between 3289-3848 Hz were obtained for compounds substituted by bulky Te(aryl) groups, implying these species are locked in a CCt-type conformation. In contrast, compounds incorporating smaller Te(aryl) moieties are predicted to be rather dynamic in solution and afford much smaller J values (2050-2676 Hz), characteristic of greater populations of AB conformers with lower couplings. This conformational dependence of through-space coupling is supported by DFT calculations.

4.
Development ; 140(21): 4435-44, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24089471

ABSTRACT

During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation/physiology , Ectoderm/physiology , GTPase-Activating Proteins/metabolism , Neurulation/physiology , Signal Transduction/physiology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Alcian Blue , Animals , Animals, Genetically Modified , Blotting, Western , HEK293 Cells , Humans , Immunoprecipitation , In Situ Hybridization, Fluorescence , Neural Crest/embryology , Neural Plate/embryology , Real-Time Polymerase Chain Reaction
5.
Chemphyschem ; 14(14): 3199-203, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23943606

ABSTRACT

Chalcogen dications: Facile synthesis of E--E bonded dications can be readily achieved. Radical cations are identified as the intermediates.

6.
Inorg Chem ; 52(8): 4346-59, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23534381

ABSTRACT

Coupling of two acenaphthene backbones through a phosphorus atom in a geminal fashion gives the first geminally bis(peri-substituted) tridentate phosphine 1. The rigid nature of the aromatic backbone and overall crowding of the molecule result in a rather inflexible ligand, with the three phosphorus atoms forming a relatively compact triangular cluster. Phosphine 1 displays restricted dynamics on an NMR time scale, which leads to the anisochronicity of all three phosphorus nuclei at low temperatures. Strained bis- and tris(sulfides) 2 and 3 and the bis(selenide) 4 have been isolated from the reaction of 1 with sulfur and selenium, respectively. These chalcogeno derivatives display pronounced in-plane and out-of-plane distortions of the aromatic backbones, indicating the limits of their angular distortions. In addition, we report metal complexes with tetrahedral [(1)Cu(MeCN)][BF4] (5), square planar [(1)PtCl][Cl] (6), trigonal bipyramidal [(1)FeCl2] (7), and octahedral fac-[(1)Mo(CO)3] (8) geometries. In all of these complexes the tris(phosphine) backbone is distorted, however to a significantly smaller extent than that in the mentioned chalcogenides 2-4. Complexes 5 and 8 show fluxionality in (31)P and (1)H NMR. All new compounds 1-8 were fully characterized, and their crystal structures are reported. Conclusions from dynamic NMR observations were augmented by DFT calculations.

7.
Chem Commun (Camb) ; 49(26): 2619-2621, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23436007

ABSTRACT

Four-membered ring [PhP(Se)(µ-Se)]2 (Woollins' reagent, WR) reacts with disodium alkenyl-diols followed by in situ ring-closure reaction with appropriate dibromoalkanes affording a series of unusual nine- to fifteen-membered organoselenophosphorus macrocycles bearing the O-P-Se-Cn-Se-P-O or O-P-Se-Cn-O-P-Se linkage.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Organoselenium Compounds/chemical synthesis , Phosphorus/chemistry , Selenium/chemistry , Heterocyclic Compounds/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Models, Molecular , Molecular Structure , Organoselenium Compounds/chemistry
8.
Angew Chem Int Ed Engl ; 52(9): 2495-8, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23345140

ABSTRACT

Across the bay: J((125)Te, (125)Te) spin-spin coupling is a highly sensitive probe into the electronic and geometric structure of 1,8-peri-substituted naphthalene tellurium derivatives. The coupling is related to the onset of multicenter bonding in these systems.

9.
Dalton Trans ; 42(1): 143-54, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23108191

ABSTRACT

Six related organo­chalconium silver(I) coordination complexes, including two examples of rare organotellurium-silver coordination, have been prepared and structurally characterised by X-ray crystallography. The series of 5-bromo-6-(phenylchalcogeno)acenaphthene ligands L1­L3 [Acenap(Br)(EPh)] (Acenap = acenaphthene-5,6-diyl; E = S, Se, Te) were independently treated with silver(I) salts (AgBF4, AgOTf). In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms and the coordinating ability of the respective counter-anion affects the structural architecture of the final silver(I) complex, generating a monomeric dinuclear complex {[(AgBF4(L1)2)2] 1}, monomeric, mononuclear, two-coordinate silver(I) complexes {[AgBF4(L)2] (2 L = L2; 3 L = L3)}, a monomeric three-coordinate silver(I) complex {[AgOTf(L2)2] 5}, a monomeric four-coordinate silver(I) complex {[AgOTf(L1)3] 4} and a 1D extended helical chain polymer {[AgOTf(L3)]n 6}. The organic acenaphthene ligands L1­L3 all adopt the same ligation mode with the central silver atom (classical monodentate coordination), which employs a variety of coordination geometries (linear, trigonal planar, see-saw, tetrahedral).

10.
Molecules ; 17(11): 13307-29, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23138535

ABSTRACT

Six silver(I) coordination complexes have been prepared and structurally characterised. Mixed chalcogen-donor acenaphthene ligands L1-L3 [Acenap(EPh)(E'Ph)] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te) were independently treated with silver(I) salts (AgBF4/AgOTf). In order to keep the number of variables to a minimum, all reactions were carried out using a 1:1 ratio of Ag/L and run in dichloromethane. The nature of the donor atoms, the coordinating ability of the respective counter-anion and the type of solvent used in recrystallisation, all affect the structural architecture of the final silver(I) complex, generating monomeric, silver(I) complexes {[AgBF4(L)2] (1 L = L1; 2 L = L2; 3 L = L3), [AgOTf(L)3] (4 L = L1; 5 L = L3), [AgBF4(L)3] (2a L = L1; 3a L = L3)} and a 1D polymeric chain {[AgOTf(L3)](n) 6}. The organic acenaphthene ligands L1-L3 adopt a number of ligation modes (bis-monodentate µ2-η²-bridging, quasi-chelating combining monodentate and η6-E(phenyl)-Ag(I) and classical monodentate coordination) with the central silver atom at the centre of a tetrahedral or trigonal planar coordination geometry in each case. The importance of weak interactions in the formation of metal-organic structures is also highlighted by the number of short non-covalent contacts present within each complex.


Subject(s)
Acenaphthenes/chemistry , Borates/chemistry , Coordination Complexes/chemistry , Mesylates/chemistry , Selenium/chemistry , Silver Compounds/chemistry , Tellurium/chemistry , Chelating Agents/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation
11.
Inorg Chem ; 51(20): 11087-97, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23004571

ABSTRACT

Twelve related monocation chalconium salts [{Nap(EPh)(E'Ph)Me}(+){CF(3)SO(3)}(-)] 2-4, [{Acenap(Br)(EPh)Me}{CF(3)SO(3)}(-)] 5-7, and [{Acenap(EPh)(E'Ph)Me}(+){CF(3)SO(3)}(-)] 8-13 have been prepared and structurally characterized. For their synthesis naphthalene compounds [Nap(EPh)(E'Ph)] (Nap = naphthalene-1,8-diyl; E/E' = S, Se, Te) N2-N4 and associated acenaphthene derivatives [Acenap(X)(EPh)]/[Acenap(EPh)(E'Ph)] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te; X = Br) A5-A13 were independently treated with a single molar equivalent of methyl trifluoromethanesulfonate (MeOTf). In addition, reaction of bis-tellurium compound A10 with 2 equiv of MeOTf afforded the doubly methylated dication salt [{Acenap(TePhMe)(2)}(2+){(CF(3)SO(3))(2)}(2-)}] 14. The distortion of the rigid naphthalene and acenaphthene backbone away from ideal was investigated in each case and correlated in general with the steric bulk of the interacting atoms located at the proximal peri positions. Naturally, introduction of the ethane linker in acenaphthene compounds increased the splay of the bay region compared with equivalent naphthalene derivatives resulting in greater peri distances. The conformation of the aromatic rings and subsequent location of p-type lone pairs has a significant impact on the geometry of the peri region, with anomalies in peri separations correlated to the ability of the frontier orbitals to take part in attractive or repulsive interactions. In all but one of the monocations a quasi-linear three-body C(Me)-E···Z (E = Te, Se, S; Z = Br/E) fragment provides an attractive component for the E···Z interaction. Density functional studies confirmed these interactions and suggested the onset of formation of three-center, four-electron bonding under appropriate geometric conditions, becoming more prevalent as heavier congeners are introduced along the series. The increasingly large J values for Se-Se, Te-Se, and Te-Te coupling observed in the (77)Se and (125)Te NMR spectra for 1, 3, 4, 9, 10, and 13 give further evidence for the existence of a weakly attractive through-space interaction.

12.
Mol Cell Biol ; 32(14): 2904-16, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22615489

ABSTRACT

In vivo cells receive simultaneous signals from multiple extracellular ligands and must integrate and interpret them to respond appropriately. Here we investigate the interplay between pathways downstream of two transforming growth factor ß (TGF-ß) superfamily members, bone morphogenetic protein (BMP) and TGF-ß. We show that in multiple cell lines, TGF-ß potently inhibits BMP-induced transcription at the level of both BMP-responsive reporter genes and endogenous BMP target genes. This inhibitory effect requires the TGF-ß type I receptor ALK5 and is independent of new protein synthesis. Strikingly, we show that Smad3 is required for TGF-ß's inhibitory effects, whereas Smad2 is not. We go on to demonstrate that TGF-ß induces the formation of complexes comprising phosphorylated Smad1/5 and Smad3, which bind to BMP-responsive elements in vitro and in vivo and mediate TGF-ß-induced transcriptional repression. Furthermore, loss of Smad3 confers on TGF-ß the ability to induce transcription via BMP-responsive elements. Our results therefore suggest that not only is Smad3 important for mediating TGF-ß's inhibitory effects on BMP signaling but it also plays a critical role in restricting the transcriptional output in response to TGF-ß.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Smad1 Protein/metabolism , Smad3 Protein/metabolism , Smad5 Protein/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Base Sequence , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein Receptors/metabolism , Cell Line , Cell Line, Tumor , DNA Primers/genetics , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Neoplasm Invasiveness , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Smad1 Protein/chemistry , Smad1 Protein/genetics , Smad3 Protein/chemistry , Smad3 Protein/genetics , Smad4 Protein/chemistry , Smad4 Protein/genetics , Smad4 Protein/metabolism , Smad5 Protein/chemistry , Smad5 Protein/genetics , Transcription, Genetic/drug effects
13.
Dalton Trans ; 41(11): 3154-65, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22290272

ABSTRACT

Sterically crowded peri-substituted selenium and tellurium acenaphthene donors D1-D7 [Acenap(EPh)(Br) E = Se, Te; Acenap(SePh)(EPh) E = Se, S; Acenap(TePh)(EPh) E = S, Se, Te] react with dibromine and diiodine acceptors to afford a group of structurally diverse addition products 1-12, comparable in some cases to previously reported naphthalene analogues. Tellurium donors D4-D6 react conventionally with the dihalogens to afford insertion adducts 6-11 (X-R(2)Te-X) exhibiting molecular see-saw geometries, characterised by hypervalent X-Te-X quasi-linear fragments. The reactions of selenium donors D1-D3 with diiodine afford expected neutral charge-transfer (CT) spoke adducts 1, 4 and 5 (R(2)Se-I-I) containing quasi-linear Se-I-I alignments. Conversely, treatment of D2 and D3 with dibromine results in the formation of two tribromide salts 2 and 3 containing bromoselanyl cations [R(2)Se-Br](+)···[Br-Br(2)](-), each exhibiting a quasi-linear three-body Br-Se···E (E = Se, S) fragment. The peri-bonding in these species can be thought of as a weak hypervalent G···Se-X three-centre, four-electron (3c-4e) type interaction, closely related to the T-shaped 3c-4e interaction. Density-functional calculations performed on 2 and 3 and their bare cations (2a and 3a) reveal Wiberg bond indices of 0.25-0.37, suggesting substantial 3c-4e character in these systems. The presence of such an interaction operating in 2 and 3 alleviates steric strain within the peri-region and minimises the degree of molecular distortion required to achieve a relaxed geometry. Ditellurium donor D7 reacts with dibromine to afford an unorthodox insertion adduct 12 containing a Te-O-Te bridge and two quasi-linear Br-Te-O fragments, with the central tellurium atoms assuming a molecular see-saw geometry. Whilst DFT calculations indicate 12 is thermodynamically unfavourable, its formation is viable under experimental conditions.


Subject(s)
Acenaphthenes/chemistry , Chalcogens/chemistry , Electrons , Halogens/chemistry , Models, Molecular , Molecular Structure
14.
Dalton Trans ; 41(11): 3141-53, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22175061

ABSTRACT

Two series of sterically crowded peri-substituted acenaphthenes have been prepared, containing mixed halogen-chalcogen functionalities at the 5,6-positions in A1-A6 (Acenap[X][EPh] (Acenap = acenaphthene-5,6-diyl; X = Br, I; E = S, Se, Te) and chalcogen-chalcogen moieties in A7-A12 (Acenap[EPh][E'Ph] (Acenap = acenaphthene-5,6-diyl; E/E' = S, Se, Te). The related dihalide compounds A13-A16 Acenap[XX'] (XX' = BrBr, II, IBr, ClCl) have also been prepared. Distortion of the acenaphthene framework away from the ideal was studied as a function of the steric bulk of the interacting halogen and chalcogen atoms occupying the peri-positions. The acenaphthene series experiences a general increase in peri-separation for molecules accommodating heavier congeners and maps the trends observed previously for the analogous naphthalene compounds N1-N12 (Nap[X][EPh], Nap[EPh][E'Ph] (X = Br, I; E/E' = S, Se, Te). The conformation of the aromatic ring systems and subsequent location of p-type lone-pairs dominates the geometry of the peri-region. The differences in peri-separations observed for compounds adopting differing conformations of the peri-substituted phenyl group can be correlated to the ability of the frontier orbitals of the halogen or chalcogen atoms to take part in attractive or repulsive interactions. Density-functional studies have confirmed these interactions and suggested the onset of formation of three-centre, four-electron bonding under appropriate geometric conditions.

15.
Mol Cell ; 43(1): 85-96, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21726812

ABSTRACT

The interplay between sequence-specific DNA-binding transcription factors, histone-modifying enzymes, and chromatin-remodeling enzymes underpins transcriptional regulation. Although it is known how single domains of chromatin "readers" bind specific histone modifications, how combinations of histone marks are recognized and decoded is poorly understood. Moreover, the role of histone binding in regulating the enzymatic activity of chromatin readers is not known. Here we focus on the TGF-ß superfamily transcriptional repressor TIF1γ/TRIM33/Ectodermin and demonstrate that its PHD finger-bromodomain constitutes a multivalent histone-binding module that specifically binds histone H3 tails unmethylated at K4 and R2 and acetylated at two key lysines. TIF1γ's ability to ubiquitinate its substrate Smad4 requires its PHD finger-bromodomain, as does its transcriptional repressor activity. Most importantly, TIF1γ's E3 ubiquitin ligase activity is induced by histone binding. We propose a model of TIF1γ activity in which it dictates the residence time of activated Smad complexes at promoters of TGF-ß superfamily target genes.


Subject(s)
Chromatin/metabolism , Transcription Factors/chemistry , Amino Acid Sequence , Cell Line , DNA/chemistry , DNA/metabolism , Epigenomics , Gene Expression Regulation , Histone Code , Histones/metabolism , Humans , Models, Genetic , Models, Molecular , Molecular Sequence Data , Promoter Regions, Genetic , Protein Structure, Tertiary , Smad Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Zinc Fingers
16.
Chem Commun (Camb) ; 46(38): 7115-7, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20820539

ABSTRACT

The synthesis, characterisation and catalytic behaviour of ruthenium indenylidene complexes bearing an N-heterocyclic carbene and triisopropylphosphite are described.

17.
Biochem J ; 417(1): 205-12, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18764783

ABSTRACT

TGFbeta (transforming growth factor beta) superfamily signalling is critical both for early embryonic development and later for tissue homoeostasis in adult organisms. The use of gene-disruption techniques in mice has been essential to understanding the functional roles of the components of the pathways downstream of TGFbeta superfamily ligands, in particular, the receptors and the Smads that transduce signals from the plasma membrane to the nucleus. Smad2 functions downstream of TGFbeta, Activin and Nodal, and a number of Smad2 mutant mice have been generated by different laboratories. Although in all cases these Smad2-deficient mice were embryonic lethal, those created by deletion of the first coding exon survived longer than those generated by replacing part of the MH (Mad homology) 1 domain or deleting all or part of the MH2 domain. Moreover, they displayed a less severe phenotype, as they were capable of transiently inducing mesoderm. In the present study, we show that embryonic fibroblasts taken from the Smad2 mutant mice created by deletion of the first coding exon express a small amount of an N-terminally truncated Smad2 protein. We show this protein results from internal initiation at Met(241) and encodes the entire MH2 domain and the C-terminal part of the linker. We demonstrate that this protein is incorporated into Smad heteromeric complexes, can interact with DNA-binding transcription factors and thereby can mediate TGFbeta-induced transcriptional activation from a number of TGFbeta-responsive elements. We propose that this functional truncated Smad2 protein can partially compensate for the loss of full-length Smad2, thereby providing an explanation for the differing phenotypes of Smad2 mutant mice.


Subject(s)
Smad2 Protein/genetics , Smad2 Protein/metabolism , Animals , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Immunoprecipitation , Methionine/genetics , Methionine/metabolism , Mice , Mice, Knockout , NIH 3T3 Cells , Phosphorylation , Protein Binding/drug effects , Protein Biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Smad2 Protein/chemistry , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transcription, Genetic/drug effects , Transforming Growth Factor beta/pharmacology
18.
Mol Cell Biol ; 28(22): 6889-902, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18794361

ABSTRACT

Transforming growth factor beta (TGF-beta) signals predominantly through a receptor complex comprising ALK5 and TbetaRII to activate receptor-regulated Smads (R-Smads) Smad2 and Smad3. In endothelial cells, however, TGF-beta can additionally activate Smad1 and Smad5. Here, we report that TGF-beta also strongly induces phosphorylation of Smad1/5 in many different normal epithelial cells, epithelium-derived tumor cells, and fibroblasts. We demonstrate that TbetaRII and ALK5, as well as ALK2 and/or ALK3, are required for TGF-beta-induced Smad1/5 phosphorylation. We show that the simultaneous activation of the R-Smads Smad2/3 and Smad1/5 by TGF-beta results in the formation of mixed R-Smad complexes, containing, for example, phosphorylated Smad1 and Smad2. The prevalence of these mixed R-Smad complexes explains why TGF-beta-induced Smad1/5 phosphorylation does not result in transcriptional activation via bone morphogenetic protein (BMP)-responsive elements, which bind activated Smad1/5-Smad4 complexes that are induced by BMP stimulation. Thus, TGF-beta induces two parallel pathways: one signaling via Smad2-Smad4 or Smad3-Smad4 complexes and the other signaling via mixed R-Smad complexes. Finally, we assess the function of the novel arm of TGF-beta signaling and show that TGF-beta-induced Smad1/5 activation is not required for the growth-inhibitory effects of TGF-beta but is specifically required for TGF-beta-induced anchorage-independent growth.


Subject(s)
Epithelial Cells/metabolism , Protein Isoforms/metabolism , Signal Transduction/physiology , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cell Line , Epithelial Cells/cytology , Genes, Reporter , Humans , Multiprotein Complexes/metabolism , Phosphorylation , Protein Isoforms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/genetics , Transcription, Genetic
19.
Mol Cell Biol ; 24(3): 1106-21, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14729957

ABSTRACT

Transforming growth factor beta (TGF-beta) superfamily members signal via complexes of activated Smads, comprising phosphorylated receptor-regulated Smads, such as Smad2 and Smad3, and Smad4. These complexes are recruited to DNA by specific transcription factors. The forkhead/winged-helix transcription factors, XFast-1/XFoxH1a and XFast-3/XFoxH1b, bind an activated Smad heterotrimer comprising two Smad2s and one Smad4. Here we identify a novel Smad2 interaction motif, the Fast/FoxH1 motif (FM), present in all known Fast/FoxH1 family members, N-terminal to the common Smad interaction motif (SIM). The FM is necessary and sufficient to bind active Smad2/Smad4 complexes. The FM differs from the SIM since it discriminates between Smad2 and Smad3, and moreover only binds phosphorylated Smad2 in the context of activated Smad complexes. It is the first Smad interaction motif with this property. Site-directed mutagenesis indicates that the binding site for the FM on a Smad2/Smad4 heterotrimer is a hydrophobic pocket that incorporates the Smad/Smad interface. We demonstrate that the presence of an FM and SIM in the Fast/FoxH1 proteins allows them to compete efficiently for activated Smad2/Smad4 complexes with transcription factors such as Mixer that only contain a SIM. This establishes a hierarchy of Smad-interacting transcription factors, determined by their affinity for active Smad complexes.


Subject(s)
DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Homeodomain Proteins/genetics , Humans , Mice , Molecular Sequence Data , NIH 3T3 Cells , Phosphorylation , Protein Binding , Smad2 Protein , Transcription Factors/genetics , Transcriptional Activation , Transforming Growth Factor beta
20.
EMBO J ; 21(1-2): 145-56, 2002 Jan 15.
Article in English | MEDLINE | ID: mdl-11782434

ABSTRACT

Transforming growth factor-beta (TGF-beta)/activin-induced Smad2/Smad4 complexes are recruited to different promoter elements by transcription factors, such as Fast-1 or the Mix family proteins Mixer and Milk, through a direct interaction between Smad2 and a common Smad interaction motif (SIM) in the transcription factors. Here we identify residues in the SIM critical for Mixer-Smad2 interaction and confirm their functional importance by demonstrating that only Xenopus and zebrafish Mix family members containing a SIM with all the correct critical residues can bind Smad2 and mediate TGF-beta-induced transcriptional activation in vivo. We identify significant sequence similarity between the SIM and the Smad-binding domain (SBD) of the membrane-associated protein SARA (Smad anchor for receptor activation). Molecular modelling, supported by mutational analyses of Smad2 and the SIM and the demonstration that the SARA SBD competes directly with the SIM for binding to Smad2, indicates that the SIM binds Smad2 in the same hydrophobic pocket as does the proline-rich rigid coil region of the SARA SBD. Thus, different Smad2 partners, whether cytoplasmic or nuclear, interact with the same binding pocket in Smad2 through a common proline-rich motif.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Trans-Activators/chemistry , Trans-Activators/metabolism , Xenopus Proteins , 3T3 Cells , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA/genetics , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Proline/chemistry , Protein Conformation , Sequence Homology, Amino Acid , Signal Transduction , Smad2 Protein , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Xenopus/genetics , Xenopus/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...