Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Curr Biol ; 32(22): 4797-4807.e5, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36228612

ABSTRACT

Unique aspects of human behavior are often attributed to differences in the relative size and organization of the human brain: these structural aspects originate during early development. Recent studies indicate that human neurodevelopment is considerably slower than that in other nonhuman primates, a finding that is termed neoteny. One aspect of neoteny is the slow onset of action potentials. However, which molecular mechanisms play a role in this process remain unclear. To examine the evolutionary constraints on the rate of neuronal maturation, we have generated transcriptional data tracking five time points, from the neural progenitor state to 8-week-old neurons, in primates spanning the catarrhine lineage, including Macaca mulatta, Gorilla gorilla, Pan paniscus, Pan troglodytes, and Homo sapiens. Despite finding an overall similarity of many transcriptional signatures, species-specific and clade-specific distinctions were observed. Among the genes that exhibited human-specific regulation, we identified a key pioneer transcription factor, GATA3, that was uniquely upregulated in humans during the neuronal maturation process. We further examined the regulatory nature of GATA3 in human cells and observed that downregulation quickened the speed of developing spontaneous action potentials, thereby modulating the human neotenic phenotype. These results provide evidence for the divergence of gene regulation as a key molecular mechanism underlying human neoteny.


Subject(s)
Hominidae , Transcriptome , Animals , Humans , Primates/genetics , Hominidae/genetics , Gorilla gorilla/genetics , Pan troglodytes/genetics , Pan paniscus , Macaca mulatta
2.
Mol Psychiatry ; 26(6): 2440-2456, 2021 06.
Article in English | MEDLINE | ID: mdl-33398088

ABSTRACT

Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/ß-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/ß-catenin signaling pathway by inhibiting GSK-3ß and releasing ß-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/ß-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3ß, upregulated LEF1 and Wnt/ß-catenin gene targets, increased transcriptional activity of complex ß-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/ß-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.


Subject(s)
Bipolar Disorder , Lithium , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Glycogen Synthase Kinase 3 beta/genetics , Humans , Lithium/pharmacology , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Neurons/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism
3.
EMBO J ; 40(3): e105819, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33300615

ABSTRACT

Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.


Subject(s)
Aging/metabolism , Anxiety/genetics , Down-Regulation , Hippocampus/cytology , Lamin Type B/genetics , Lamin Type B/metabolism , Aging/genetics , Animals , Cell Differentiation , Cell Line , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Rats
4.
Genome Res ; 30(11): 1643-1654, 2020 11.
Article in English | MEDLINE | ID: mdl-33122305

ABSTRACT

Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.


Subject(s)
Hippocampus/metabolism , RNA-Seq , Short Interspersed Nucleotide Elements , Single-Cell Analysis , Transcription, Genetic , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Hippocampus/cytology , Hippocampus/physiology , Mice , Promoter Regions, Genetic
5.
Biol Psychiatry ; 88(2): 150-158, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32278494

ABSTRACT

BACKGROUND: We recently reported a hyperexcitability phenotype displayed in dentate gyrus granule neurons derived from patients with bipolar disorder (BD) as well as a hyperexcitability that appeared only in CA3 pyramidal hippocampal neurons that were derived from patients with BD who responded to lithium treatment (lithium responders) and not in CA3 pyramidal hippocampal neurons that were derived from patients with BD who did not respond to lithium (nonresponders). METHODS: Here we used our measurements of currents in neurons derived from 4 control subjects, 3 patients with BD who were lithium responders, and 3 patients with BD who were nonresponders. We changed the conductances of simulated dentate gyrus and CA3 hippocampal neurons according to our measurements to derive a numerical simulation for BD neurons. RESULTS: The computationally simulated BD dentate gyrus neurons had a hyperexcitability phenotype similar to the experimental results. Only the simulated BD CA3 neurons derived from lithium responder patients were hyperexcitable. Interestingly, our computational model captured a physiological instability intrinsic to hippocampal neurons that were derived from nonresponder patients that we also observed when re-examining our experimental results. This instability was caused by a drastic reduction in the sodium current, accompanied by an increase in the amplitude of several potassium currents. These baseline alterations caused nonresponder BD hippocampal neurons to drastically shift their excitability with small changes to their sodium currents, alternating between hyperexcitable and hypoexcitable states. CONCLUSIONS: Our computational model of BD hippocampal neurons that was based on our measurements reproduced the experimental phenotypes of hyperexcitability and physiological instability. We hypothesize that the physiological instability phenotype strongly contributes to affective lability in patients with BD.


Subject(s)
Bipolar Disorder , Lithium , Bipolar Disorder/drug therapy , Dentate Gyrus , Hippocampus , Humans , Neurons , Pyramidal Cells
6.
Biol Psychiatry ; 88(2): 139-149, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31732108

ABSTRACT

BACKGROUND: Approximately 1 in every 50 to 100 people is affected with bipolar disorder (BD), making this disease a major economic burden. The introduction of induced pluripotent stem cell methodology enabled better modeling of this disorder. METHODS: Having previously studied the phenotype of dentate gyrus granule neurons, we turned our attention to studying the phenotype of CA3 hippocampal pyramidal neurons of 6 patients with BD compared with 4 control individuals. We used patch clamp and quantitative polymerase chain reaction to measure electrophysiological features and RNA expression by specific channel genes. RESULTS: We found that BD CA3 neurons were hyperexcitable only when they were derived from patients who responded to lithium; they featured sustained activity with large current injections and a large, fast after-hyperpolarization, similar to what we previously reported in dentate gyrus neurons. The higher amplitudes and faster kinetics of fast potassium currents correlated with this hyperexcitability. Further supporting the involvement of potassium currents, we observed an overexpression of KCNC1 and KCNC2 in hippocampal neurons derived from lithium responders. Applying specific potassium channel blockers diminished the hyperexcitability. Long-term lithium treatment decreased the hyperexcitability observed in the CA3 neurons derived from lithium responders while increasing sodium currents and reducing fast potassium currents. When differentiating this cohort into spinal motor neurons, we did not observe any changes in the excitability of BD motor neurons compared with control motor neurons. CONCLUSIONS: The hyperexcitability of BD neurons is neuronal type specific with the involvement of altered potassium currents that allow for a sustained, continued firing activity.


Subject(s)
Bipolar Disorder , Bipolar Disorder/drug therapy , Dentate Gyrus , Hippocampus , Humans , Neurons , Patch-Clamp Techniques , Pyramidal Cells , Shaw Potassium Channels
7.
Elife ; 82019 02 07.
Article in English | MEDLINE | ID: mdl-30730291

ABSTRACT

Comparative analyses of neuronal phenotypes in closely related species can shed light on neuronal changes occurring during evolution. The study of post-mortem brains of nonhuman primates (NHPs) has been limited and often does not recapitulate important species-specific developmental hallmarks. We utilize induced pluripotent stem cell (iPSC) technology to investigate the development of cortical pyramidal neurons following migration and maturation of cells grafted in the developing mouse cortex. Our results show differential migration patterns in human neural progenitor cells compared to those of chimpanzees and bonobos both in vitro and in vivo, suggesting heterochronic changes in human neurons. The strategy proposed here lays the groundwork for further comparative analyses between humans and NHPs and opens new avenues for understanding the differences in the neural underpinnings of cognition and neurological disease susceptibility between species.


Subject(s)
Neurons/cytology , Pan paniscus/physiology , Pan troglodytes/physiology , Animals , Cell Differentiation , Cell Line , Cell Movement/genetics , Dendrites/metabolism , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Species Specificity
8.
Stem Cell Reports ; 8(6): 1757-1769, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591655

ABSTRACT

Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1ß or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1ß. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Stem Cells/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glutamic Acid/metabolism , Humans , Hyaluronan Receptors/metabolism , Induced Pluripotent Stem Cells/metabolism , Interleukin-1beta/pharmacology , Leukemia Inhibitory Factor/pharmacology , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Stem Cells/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/pharmacology
9.
J Neurosci ; 24(12): 2886-97, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15044527

ABSTRACT

We report the first isolation of progenitor cells from the hypothalamus, a derivative of the embryonic basal plate that does not exhibit neurogenesis postnatally. Neurons derived from hypothalamic progenitor cells were compared with those derived from progenitor cultures of hippocampus, an embryonic alar plate derivative that continues to support neurogenesis in vivo into adulthood. Aside from their different embryonic origins and their different neurogenic potential in vivo, these brain regions were chosen because they are populated with cells of three different categories: Category I cells are generated in both hippocampus and hypothalamus, Category II cells are generated in the hypothalamus but are absent from the hippocampus, and Category III is a cell type generated in the olfactory placode that migrates into the hypothalamus during development. Stem-like cells isolated from other brain regions, with the ability to generate neurons and glia, produce neurons of several phenotypes including gabaergic, dopaminergic, and cholinergic lineages. In the present study, we extended our observations into neuroendocrine phenotypes. The cultured neural precursors from 7-week-old rat hypothalamus readily generated neuropeptide-expressing neurons. Hippocampal and hypothalamic progenitor cultures converged to indistinguishable populations and produced neurons of all three categories, confirming that even short-term culture confers or selects for immature progenitors with enough plasticity to elaborate neuronal phenotypes usually inhibited in vivo by the local microenvironment. The range of phenotypes generated from neuronal precursors in vitro now includes the peptides found in the neuroendocrine system: corticotropin-releasing hormone, growth hormone-releasing hormone, gonadotropin-releasing hormone, oxytocin, somatostatin, thyrotropin-releasing hormone, and vasopressin.


Subject(s)
Cell Differentiation/physiology , Hippocampus/cytology , Hypothalamus/cytology , Neurons/classification , Neurons/cytology , Stem Cells/cytology , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Cell Count , Cell Separation , Cells, Cultured , Corticotropin-Releasing Hormone/genetics , Immunohistochemistry , Male , Neurons/metabolism , Neuropeptides/biosynthesis , Neurosecretory Systems/cytology , Phenotype , RNA, Messenger/biosynthesis , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
10.
Nucleic Acids Res ; 31(10): e57, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12736323

ABSTRACT

A common method for generating mice with subtle genetic manipulations uses homologous recombination (HR) in embryonic stem (ES) cells to replace a wild-type gene with a slightly modified one. Generally, a drug resistance gene is inserted with the modified gene to select correctly targeted clones. Often, however, the presence of this drug resistance gene interferes with the normal locus and creates a null or hypomorphic allele. Flanking of the selectable marker by loxP sites followed by Cre-mediated deletion after drug selection can overcome this problem. The simplest method used to remove a loxP-flanked selectable marker is to breed an animal carrying a loxP-flanked drug resistance gene to an animal that expresses Cre recombinase in the germline. To date only outbred transgenic mice are available for this purpose. This can be problematic for phenotypic analysis in many organ systems, including the brain, and for the analysis of behavior. While attempting to make 129S6/SvEvTac inbred background (isogenic to our ES cells) mice that express Cre under the control of several tissue-specific promoters, we serendipitously generated a line that excises loxP-flanked drug resistance genes in all tissues, including the germline. This reagent allows deletion of loxP-flanked sequences while maintaining the mutation on an inbred background.


Subject(s)
Gene Deletion , Integrases/genetics , Viral Proteins/genetics , Animals , Binding Sites/genetics , Drug Resistance/genetics , Female , Genome , Green Fluorescent Proteins , Homozygote , Hypoxanthine Phosphoribosyltransferase/genetics , Integrases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred Strains , Mice, Transgenic , Microscopy, Confocal , Mutagenesis, Insertional , Mutation , Recombination, Genetic , Viral Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 99(4): 2320-5, 2002 Feb 19.
Article in English | MEDLINE | ID: mdl-11842206

ABSTRACT

The Cre/loxP system is increasingly showing promise for investigating genes involved in neural function. Here, we demonstrate that in vivo modification of genes in the mouse brain can be accomplished in a spatial- and temporal-specific manner by targeted delivery of an adeno-associated virus (AAV) encoding a green fluorescent protein/Cre recombinase (GFP/Cre) fusion protein. By using a reporter mouse, in which Cre recombinase activates beta-galactosidase expression, we demonstrate long-term recombination of neurons in the hippocampus, striatum, and septum as early as 7 days after stereotaxic injection of virus. Recombined cells were observed for at least 6 months postinjection without evidence of cell loss or neural damage. AAV-mediated delivery of GFP/Cre provides a valuable approach to alter the mouse genome, as AAV delivers genes efficiently to neurons with low toxicity. This approach will greatly facilitate the study of genetic modifications in the mouse brain.


Subject(s)
Brain/metabolism , Dependovirus/genetics , Gene Transfer Techniques , Animals , Cell Line , Corpus Striatum/metabolism , Genetic Vectors , Green Fluorescent Proteins , Hippocampus/metabolism , Homozygote , Humans , Immunohistochemistry , Integrases/metabolism , Luminescent Proteins/metabolism , Mice , Mice, Transgenic , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , Recombination, Genetic , Septum of Brain/metabolism , Time Factors , Viral Proteins/metabolism , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...