Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 130(2): 99-108, 2023 02.
Article in English | MEDLINE | ID: mdl-36539450

ABSTRACT

Dispersal is a critical parameter for successful pest control measures as it determines the rate of movement across target control areas and influences the risk of human exposure. We used a fine-scale spatial population genomic approach to investigate the dispersal ecology and population structure of Aedes notoscriptus, an important disease transmitting mosquito at the Mornington Peninsula, Australia. We sampled and reared Ae. notoscriptus eggs at two time points from 170 traps up to 5 km apart and generated genomic data from 240 individuals. We also produced a draft genome assembly from a laboratory colony established from mosquitoes sampled near the study area. We found low genetic structure (Fst) and high coancestry throughout the study region. Using genetic data to identify close kin dyads, we found that mosquitoes had moved distances of >1 km within a generation, which is further than previously recorded. A spatial autocorrelation analysis of genetic distances indicated genetic similarity at >1 km separation, a tenfold higher distance than for a comparable population of Ae. aegypti, from Cairns, Australia. These findings point to high mobility of Ae. notoscriptus, highlighting challenges of localised intervention strategies. Further sampling within the same area 6 and 12 months after initial sampling showed that egg-counts were relatively consistent across time, and that spatial variation in egg-counts covaried with spatial variation in Wright's neighbourhood size (NS). As NS increases linearly with population density, egg-counts may be useful for estimating relative density in Ae. notoscriptus. The results highlight the importance of acquiring species-specific data when planning control measures.


Subject(s)
Aedes , Animals , Humans , Australia , Urban Population , Genomics , Population Density
2.
Front Genet ; 13: 1012694, 2022.
Article in English | MEDLINE | ID: mdl-36386808

ABSTRACT

The genome of the major agricultural weed species, annual ryegrass (Lolium rigidum) was assembled, annotated and analysed. Annual ryegrass is a major weed in grain cropping, and has the remarkable capacity to evolve resistance to herbicides with various modes of action. The chromosome-level assembly was achieved using short- and long-read sequencing in combination with Hi-C mapping. The assembly size is 2.44 Gb with N50 = 361.79 Mb across 1,764 scaffolds where the seven longest sequences correspond to the seven chromosomes. Genome completeness assessed through BUSCO returned a 99.8% score for complete (unique and duplicated) and fragmented genes using the Viridiplantae set. We found evidence for the expansion of herbicide resistance-related gene families including detoxification genes. The reference genome of L. rigidum is a critical asset for leveraging genetic information for the management of this highly problematic weed species.

3.
Commun Biol ; 5(1): 297, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393491

ABSTRACT

Native to the Americas, the invasive Spodoptera frugiperda (fall armyworm; FAW) was reported in West Africa in 2016, followed by its chronological detection across the Old World and the hypothesis of an eastward Asia expansion. We explored population genomic signatures of American and Old World FAW and identified 12 maternal mitochondrial DNA genome lineages across the invasive range. 870 high-quality nuclear single nucleotide polymorphic DNA markers identified five distinct New World population clusters, broadly reflecting FAW native geographical ranges and the absence of host-plant preferences. We identified unique admixed Old World populations, and admixed and non-admixed Asian FAW individuals, all of which suggested multiple introductions underpinning the pest's global spread. Directional gene flow from the East into eastern Africa was also detected, in contrast to the west-to-east spread hypothesis. Our study demonstrated the potential of population genomic approaches via international partnership to address global emerging pest threats and biosecurity challenges.


Subject(s)
Gene Flow , Metagenomics , Spodoptera , Africa, Eastern , Animals , Asia , Spodoptera/genetics
4.
Mol Ecol Resour ; 22(4): 1559-1581, 2022 May.
Article in English | MEDLINE | ID: mdl-34839580

ABSTRACT

Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.


Subject(s)
Drosophila , Genome , Adaptation, Physiological/genetics , Animals , Drosophila/genetics , Genomics , Humans , Phylogeny
5.
Commun Biol ; 2: 357, 2019.
Article in English | MEDLINE | ID: mdl-31583288

ABSTRACT

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and Halloween genes (CYP) involved in moulting and reproduction. However, there was little overlap in these gene sets and associated GO terms, indicating different selective regimes operating on each of the parasites. Based on our findings, we suggest that species-specific strategies may be needed to combat evolving parasite communities.


Subject(s)
Bees/parasitology , Evolution, Molecular , Varroidae/genetics , Animals , Cytochrome P-450 Enzyme System/genetics , DNA, Mitochondrial , Female , Host-Parasite Interactions , Male , Species Specificity
6.
Curr Opin Insect Sci ; 31: 131-138, 2019 02.
Article in English | MEDLINE | ID: mdl-31109666

ABSTRACT

We use the genomes of 160 insect species to test the hypothesis that the size of detoxifying enzyme families is greater in species using more chemically diverse food resources. Phylogenetically appropriate contrasts in subsamples of the data generally support the hypothesis. We find relatively high numbers of cytochrome P450, glutathione S-transferase and carboxyl/choline esterase genes in omnivores and herbivores feeding on chemically complex tissues and relatively low numbers of these genes in specialists on relatively simple diets, including plant sap, nectar and pollen, and blood. Among Lepidoptera feeding on green plant tissue and Condylognatha feeding on sap we also find more of these genes in highly polyphagous species, many of which are major agricultural pests. These genomic signatures of food resource use are consistent with the hypothesis that some taxa are preadapted for insecticide resistance evolution.


Subject(s)
Inactivation, Metabolic/genetics , Insecta/enzymology , Animals , Cytochrome P-450 Enzyme System/genetics , Esterases/genetics , Food Preferences , Glutathione Transferase/genetics , Insecta/genetics , Insecticide Resistance/genetics , Phenotype
7.
Nat Ecol Evol ; 3(4): 647-656, 2019 04.
Article in English | MEDLINE | ID: mdl-30886368

ABSTRACT

Imidacloprid, the world's most used insecticide, has caused considerable controversy due to harmful effects on non-pest species and increasing evidence showing that insecticides have become the primary selective force in many insect species. The genetic response to insecticides is heterogeneous across populations and environments, leading to more complex patterns of genetic variation than previously thought. This motivated the investigation of imidacloprid resistance at different temperatures in natural populations of Drosophila melanogaster originating from four climate extremes replicated across two continents. Population and quantitative genomic analysis, supported by functional tests, have revealed a mixed genetic architecture to resistance involving major genes (Paramyosin and Nicotinic-Acetylcholine Receptor Alpha 3) and polygenes with a major trade-off with thermotolerance. Reduced genetic differentiation at resistance-associated loci indicated enhanced gene flow at these loci. Resistance alleles showed stronger evidence of positive selection in temperate populations compared to tropical populations in which chromosomal inversions In(2 L)t, In(3 R)Mo and In(3 R)Payne harbour susceptibility alleles. Polygenic architecture and ecological factors should be considered when developing sustainable management strategies for both pest and beneficial insects.


Subject(s)
Drosophila melanogaster/physiology , Insecticide Resistance/physiology , Insecticides , Neonicotinoids , Nitro Compounds , Thermotolerance , Animals , Climate , Female , Genome-Wide Association Study , Receptors, Nicotinic/genetics , Tropomyosin/genetics
8.
BMC Genomics ; 20(1): 52, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30651071

ABSTRACT

BACKGROUND: Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species. RESULTS: We find disproportionately high rates of gene gains in internal branches in the species' phylogeny where cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the existence of widespread regulatory as well as structural changes in the species' differing adaptations. Gene Ontology terms related to metabolism were enriched in the differentially expressed genes in the resistant species while terms related to stress response were over-represented in the sensitive one. CONCLUSION: Adaptations to new cactus hosts and hot desiccating environments were associated with periods of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change.


Subject(s)
Adaptation, Physiological/genetics , Cactaceae/physiology , Desert Climate , Drosophila/genetics , Drosophila/physiology , Genome, Insect , Animals , Cluster Analysis , Fuzzy Logic , Gene Ontology , Genes, Insect , Heat-Shock Response/genetics , Molecular Sequence Annotation , Phylogeny , Selection, Genetic , Stress, Physiological/genetics , Transcription, Genetic
9.
Insect Biochem Mol Biol ; 106: 10-18, 2019 03.
Article in English | MEDLINE | ID: mdl-30611903

ABSTRACT

The Drosophila melanogaster enzymes juvenile hormone esterase (DmJHE) and its duplicate, DmJHEdup, present ideal examples for studying the structural changes involved in the neofunctionalization of enzyme duplicates. DmJHE is a hormone esterase with precise regulation and highly specific activity for its substrate, juvenile hormone. DmJHEdup is an odorant degrading esterase (ODE) responsible for processing various kairomones in antennae. Our phylogenetic analysis shows that the JHE lineage predates the hemi/holometabolan split and that several duplications of JHEs have been templates for the evolution of secreted ß-esterases such as ODEs through the course of insect evolution. Our biochemical comparisons further show that DmJHE has sufficient substrate promiscuity and activity against odorant esters for a duplicate to evolve a general ODE function against a range of mid-long chain food esters, as is shown in DmJHEdup. This substrate range complements that of the only other general ODE known in this species, Esterase 6. Homology models of DmJHE and DmJHEdup enabled comparisons between each enzyme and the known structures of a lepidopteran JHE and Esterase 6. Both JHEs showed very similar active sites despite low sequence identity (30%). Both ODEs differed drastically from the JHEs and each other, explaining their complementary substrate ranges. A small number of amino acid changes are identified that may have been involved in the early stages of the neofunctionalization of DmJHEdup. Our results provide key insights into the process of neofunctionalization and the structural changes that can be involved.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Animals , Carboxylic Ester Hydrolases/metabolism , Drosophila/metabolism , Drosophila Proteins/metabolism , Phylogeny
10.
J Hered ; 110(1): 80-91, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30445496

ABSTRACT

We use annotated genomes of 14 Drosophila species covering diverse host use phenotypes to test whether 4 gene families that often have detoxification functions are associated with host shifts among species. Bark, slime flux, flower, and generalist necrotic fruit-feeding species all have similar numbers of carboxyl/cholinesterase, glutathione S-transferase, cytochrome P450, and UDP-glucuronosyltransferase genes. However, species feeding on toxic Morinda citrifolia fruit and the fresh fruit-feeding Drosophila suzukii have about 30 and 60 more, respectively. ABC transporters show a different pattern, with the flower-feeding D. elegans and the generalist necrotic fruit and cactus feeder D. hydei having about 20 and >100 more than the other species, respectively. Surprisingly, despite the complex secondary chemistry we find that 3 cactophilic specialists in the mojavensis species cluster have variably fewer genes than any of the other species across all 4 families. We also find 82 positive selection events across the 4 families, with the terminal D. suzukii and M. citrifolia-feeding D. sechellia branches again having the highest number of such events in proportion to their respective branch lengths. Many of the genes involved in these host-use-specific gene number differences or positive selection events lie in specific clades of the gene families that have been recurrently associated with detoxification. Several genes are also found to be involved in multiple duplication and/or positive selection events across the species studied regardless of their host use phenotypes; the most frequently involved are the ABC transporter CG1718, which is not in a specific clade associated with detoxification, and the α-esterase gene cluster, which is.


Subject(s)
Drosophila/genetics , Feeding Behavior , Genes, Insect , Animals , Cactaceae , Drosophila/physiology , Food/toxicity , Fruit , Inactivation, Metabolic
11.
BMC Genomics ; 18(1): 673, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28859620

ABSTRACT

BACKGROUND: Distinguishing orthologous and paralogous relationships between genes across multiple species is essential for comparative genomic analyses. Various computational approaches have been developed to resolve these evolutionary relationships, but strong trade-offs between precision and recall of orthologue prediction remains an ongoing challenge. RESULTS: Here we present Orthonome, an orthologue prediction pipeline, designed to reduce the trade-off between orthologue capture rates (recall) and accuracy of multi-species orthologue prediction. The pipeline compares sequence domains and then forms sequence-similar clusters before using phylogenetic comparisons to identify inparalogues. It then corrects sequence similarity metrics for fragment and gene length bias using a novel scoring metric capturing relationships between full length as well as fragmented genes. The remaining genes are then brought together for the identification of orthologues within a phylogenetic framework. The orthologue predictions are further calibrated along with inparalogues and gene births, using synteny, to identify novel orthologous relationships. We use 12 high quality Drosophila genomes to show that, compared to other orthologue prediction pipelines, Orthonome provides orthogroups with minimal error but high recall. Furthermore, Orthonome is resilient to suboptimal assembly/annotation quality, with the inclusion of draft genomes from eight additional Drosophila species still providing >6500 1:1 orthologues across all twenty species while retaining a better combination of accuracy and recall than other pipelines. Orthonome is implemented as a searchable database and query tool along with multiple-sequence alignment browsers for all sets of orthologues. The underlying documentation and database are accessible at http://www.orthonome.com . CONCLUSION: We demonstrate that Orthonome provides a superior combination of orthologue capture rates and accuracy on complete and draft drosophilid genomes when tested alongside previously published pipelines. The study also highlights a greater degree of evolutionary conservation across drosophilid species than earlier thought.


Subject(s)
Genomics/methods , Sequence Homology, Nucleic Acid , Animals , Drosophila melanogaster/genetics , Evolution, Molecular
12.
Curr Opin Insect Sci ; 13: 70-76, 2016 02.
Article in English | MEDLINE | ID: mdl-27436555

ABSTRACT

The size of gene families associated with xenobiotic detoxification in insects may be associated with the complexity of their diets and their propensities to develop insecticide resistance. We test these hypotheses by collating the annotations of cytochrome P450, carboxyl/cholinesterase and glutathione S-transferase genes in 65 insect species with data on their host use and history of insecticide resistance. We find 2-4 fold variation across the species in the numbers of these genes and, in some orders, especially the Hymenoptera, there is a clear relationship between the numbers of genes and feeding preferences. However in other orders, in particular the Lepidoptera, no such relationship is apparent. The size of these three gene families also tend to correlate with insecticide resistance propensity but this may not be an independent effect because species with broader host ranges are more likely to be pests that are heavily sprayed with insecticides.


Subject(s)
Food Preferences/physiology , Herbivory/physiology , Insecta/enzymology , Insecta/genetics , Insecticide Resistance/genetics , Animals , Cholinesterases/genetics , Cytochrome P-450 Enzyme System/genetics , Glutathione Transferase/genetics , Inactivation, Metabolic/genetics
13.
Mol Ecol ; 24(10): 2423-32, 2015 May.
Article in English | MEDLINE | ID: mdl-25789416

ABSTRACT

Chromosomal inversion polymorphisms are common in animals and plants, and recent models suggest that alternative arrangements spread by capturing different combinations of alleles acting additively or epistatically to favour local adaptation. It is also thought that inversions typically maintain favoured combinations for a long time by suppressing recombination between alternative chromosomal arrangements. Here, we consider patterns of linkage disequilibrium and genetic divergence in an old inversion polymorphism in Drosophila melanogaster (In(3R)Payne) known to be associated with climate change adaptation and a recent invasion event into Australia. We extracted, karyotyped and sequenced whole chromosomes from two Australian populations, so that changes in the arrangement of the alleles between geographically separated tropical and temperate areas could be compared. Chromosome-wide linkage disequilibrium (LD) analysis revealed strong LD within the region spanned by In(3R)Payne. This genomic region also showed strong differentiation between the tropical and the temperate populations, but no differentiation between different karyotypes from the same population, after controlling for chromosomal arrangement. Patterns of differentiation across the chromosome arm and in gene ontologies were enhanced by the presence of the inversion. These data support the notion that inversions are strongly selected by bringing together combinations of genes, but it is still not clear if such combinations act additively or epistatically. Our data suggest that climatic adaptation through inversions can be dynamic, reflecting changes in the relative abundance of different forms of an inversion and ongoing evolution of allelic content within an inversion.


Subject(s)
Adaptation, Physiological/genetics , Chromosome Inversion , Climate Change , Drosophila melanogaster/genetics , Genetics, Population , Alleles , Animals , Australia , Evolution, Molecular , Karyotype , Linkage Disequilibrium , Sequence Analysis, DNA
14.
Mol Ecol ; 22(10): 2716-25, 2013 May.
Article in English | MEDLINE | ID: mdl-23506114

ABSTRACT

In many invertebrates, body size shows genetically based clines, with size increasing in colder climates. Large body size is typically associated with prolonged development times. We consider variation in the CNS-specific gene neurofibromin 1 (Nf1) and its association with body size and development time. We identified two major Nf1 haplotypes in natural populations, Nf1-insertion-A and Nf1-deletion-G. These haplotypes are characterized by a 45-base insertion/deletion (INDEL) in Nf1 intron 2 and an A/G synonymous substitution (locus L17277). Linkage disequilibrium (LD) between the INDEL and adjacent sites is high but appears to be restricted within the Nf1 gene interval. In Australia, the frequency of the Nf1-insertion-A haplotype increases with latitude where wing size is larger, independent of the chromosomal inversion In(3R)Payne. Unexpectedly, the Nf1-insertion-A haplotype is negatively associated with wing size. We found that the Nf1-insertion-A haplotype is enriched in females with shorter development time. This suggests that the Nf1 haplotype cline may be driven by selection for development time rather than size; females from southern (higher latitude) D. melanogaster populations maintain a rapid development time despite being relatively larger, and the higher incidence of Nf1-insertion-A in Southern Australia may contribute to this pattern, whereas the effects of the Nf1 haplotypes on size may be countered by other loci with antagonistic effects on size and development time. Our results point to the potential complexity involved in identifying selection on genetic variants exhibiting pleiotropic effects when studies are based on spatial patterns or association studies.


Subject(s)
Body Size/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Neurofibromin 1/genetics , Polymorphism, Genetic/genetics , Selection, Genetic , Wings, Animal/anatomy & histology , Animals , Australia , Base Sequence , DNA Primers/genetics , Drosophila melanogaster/anatomy & histology , Female , Gene Frequency , Genotype , Geography , Haplotypes/genetics , Linkage Disequilibrium , Molecular Sequence Data , Phenotype , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...