Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
2.
Parasitology ; 150(14): 1263-1265, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38200697

ABSTRACT

Avian malaria parasites or haemosporidia are found in bird species worldwide. This special issue focuses on 3 most commonly studied genera: Haemoproteus, Plasmodium and Leucocytozoon. Seven research articles and reviews are provided to illustrate the breadth of knowledge of the diversity of avian malaria parasites in different regional habitats and across bird species, and the use of avian haemosporidian systems to examine host­parasite eco-evolutionary questions.


Subject(s)
Bird Diseases , Haemosporida , Malaria, Avian , Parasites , Plasmodium , Animals , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Prevalence , Plasmodium/genetics , Haemosporida/genetics , Birds/parasitology , Bird Diseases/epidemiology , Bird Diseases/parasitology , Phylogeny
3.
Sci Rep ; 12(1): 18814, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335172

ABSTRACT

Malaria parasites can affect vector-related behaviours, increasing transmission success. Using Anopheles gambiae and Plasmodium falciparum, we consider the effect of interaction between infection stage and vector age on diel locomotion in response to human odour and the expression of antennal chemosensory genes. We identified age-dependent behavioural diel compartmentalisation by uninfected females post-blood meal. Infection disrupts overall and diel activity patterns compared with age-matched controls. In this study, mosquitoes carrying transmissible sporozoites were more active, shifting activity periods which corresponded with human host availability, in response to human odour. Older, uninfected, blood-fed females displayed reduced activity during their peak host-seeking period in response to human odour. Age- and infection stage-specific changes in odour-mediated locomotion coincide with altered transcript abundance of select chemosensory genes suggesting a possible molecular mechanism regulating the behaviour. We hypothesize that vector-related behaviours of female mosquitoes are altered by infection stage and further modulated by the age post-blood meal of the vector. Findings may have important implications for malaria transmission and disease dynamics.


Subject(s)
Anopheles , Malaria , Animals , Female , Humans , Mosquito Vectors/parasitology , Anopheles/parasitology , Plasmodium falciparum/genetics , Gene Expression
4.
Cell Host Microbe ; 30(2): 139-141, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35143762

ABSTRACT

Sickle cell haemoglobin (HbS) confers protection, albeit incomplete, from severe malaria. A recent study by Band et al. in Nature on parasite genomic variation of severe malaria cases identifies parasite genomic regions with alleles associated with severe disease risk in HbS individuals. The protective effect of HbS depends therefore on parasite genotype.


Subject(s)
Anemia, Sickle Cell , Malaria, Falciparum , Malaria , Anemia, Sickle Cell/genetics , Biological Evolution , Cytoprotection , Genotype , Hemoglobin, Sickle/genetics , Humans , Malaria/prevention & control , Malaria, Falciparum/parasitology
5.
Front Trop Dis ; 3: 979615, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36742111

ABSTRACT

Novel ideas for control of mosquito-borne disease include the use of bacterial symbionts to reduce transmission. Bacteria belonging to the family Enterobacteriaceae isolated from mosquito midgut have shown promise in limiting Plasmodium intensity in the Anopheles vector. However, the mechanism of interaction between bacteria and parasite remains unclear. This study aimed at screening bio-products of two bacteria candidates for their anti-Plasmodial effects on mosquito stages of P. falciparum. Enterobacter cloacae and Serratia marcescens were isolated from field-caught Anopheles gambiae s.l. Spent media from liquid cultures of these bacteria were filtered, lyophilized and dissolved in sterile phosphate buffered saline (PBS). The re-dissolved bacterial products were added to gametocytaemic blood meals and fed to An. gambiae mosquitoes via membrane feeders. Control groups were fed on infected blood with or without lyophilized LB medium. The effect of the products on the infection prevalence and intensity of P. falciparum in mosquitoes was assessed by dissecting mosquito midguts and counting oocysts 10-11 days post-infection. S. marcescens bio-products elicited significant reduction in the number of mosquitoes infected (P=4.02 x10-5) with P. falciparum and the oocyst intensity (P<2 x 10-16) than E. cloacae products (P>0.05 for both prevalence and intensity) compared to the control (lyophilized LB medium). These data support the use of bioproducts released by S. marcescens for malaria control based on transmission blocking in the vector.

6.
Sci Rep ; 11(1): 19118, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580326

ABSTRACT

The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.


Subject(s)
Malaria, Falciparum/diagnosis , Merozoites/isolation & purification , Plasmodium falciparum/isolation & purification , Real-Time Polymerase Chain Reaction , Adolescent , Adult , Antimalarials/therapeutic use , Female , Genes, Protozoan , Healthy Volunteers , Host-Parasite Interactions/drug effects , Humans , Limit of Detection , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Merozoites/genetics , Middle Aged , Parasite Load , Plasmodium falciparum/genetics , Reproducibility of Results , Young Adult
7.
Front Cell Infect Microbiol ; 11: 669088, 2021.
Article in English | MEDLINE | ID: mdl-34268135

ABSTRACT

The human malaria parasite Plasmodium falciparum expresses variant PfEMP1 proteins on the infected erythrocyte, which function as ligands for endothelial receptors in capillary vessels, leading to erythrocyte sequestration and severe malaria. The factors that orchestrate the mono-allelic expression of the 45-90 PfEMP1-encoding var genes within each parasite genome are still not fully identified. Here, we show that the transcription factor PfAP2-O influences the transcription of var genes. The temporary knockdown of PfAP2-O leads to a complete loss of var transcriptional memory and a decrease in cytoadherence in CD36 adherent parasites. AP2-O-knocked-down parasites exhibited also significant reductions in transmission through Anopheles mosquitoes. We propose that PfAP2-O is, beside its role in transmission stages, also one of the virulence gene transcriptional regulators and may therefore be exploited as an important target to disrupt severe malaria and block parasite transmission.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Erythrocytes , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Sexual Development , Transcription Factors/genetics , Transcription, Genetic , Virulence/genetics
8.
NAR Genom Bioinform ; 3(1): lqaa113, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33987532

ABSTRACT

Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.

9.
Sci Rep ; 10(1): 10925, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616767

ABSTRACT

Human malaria parasites have complex but poorly understood population dynamics inside their human host. In some but not all infections, parasites progress synchronously through the 48 h lifecycle following erythrocyte invasion, such that at any one time there is a limited spread of parasites at a particular time (hours) post-invasion. Patients presenting with older parasites, and with asynchronous infections, have been reported to have higher risks of fatal outcomes, associated with higher parasite biomass and multiplication rates respectively. However, practical tools to assess synchrony and estimate parasite age post-invasion in patient samples are lacking. We have developed a novel method based on three genes differentially expressed over the parasite intra-erythrocytic lifecycle, and applied it to samples from patients with uncomplicated malaria attending two health clinics in Ghana. We found that most patients presented with synchronous infections, and with parasites within 12 h of erythrocyte invasion. Finally we investigated if clinical features such as fever and parasite density could act as predictors of parasite age and synchrony. The new method is a simple and practicable approach to study parasite dynamics in naturally-infected patients, and is a significant improvement on the subjective microscopical methods for parasite staging in vivo, aiding patient management.


Subject(s)
Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Aging , Animals , Ethnicity , Gene Expression Regulation, Developmental , Ghana , Humans , Life Cycle Stages , Models, Biological , Parasitemia/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology
10.
BMC Infect Dis ; 20(1): 413, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32539801

ABSTRACT

BACKGROUND: Successful control programs have impeded local malaria transmission in almost all Gulf Cooperation Council (GCC) countries: Qatar, Bahrain, Kuwait, Oman, the United Arab Emirates (UAE) and Saudi Arabia. Nevertheless, a prodigious influx of imported malaria via migrant workers sustains the threat of local transmission. Here we examine the origin of imported malaria in Qatar, assess genetic diversity and the prevalence of drug resistance genes in imported Plasmodium falciparum, and finally, address the potential for the reintroduction of local transmission. METHODS: This study examined imported malaria cases reported in Qatar, between 2013 and 2016. We focused on P. falciparum infections and estimated both total parasite and gametocyte density, using qPCR and qRT-PCR, respectively. We also examined ten neutral microsatellites and four genes associated with drug resistance, Pfmrp1, Pfcrt, Pfmdr1, and Pfkelch13, to assess the genetic diversity of imported P. falciparum strains, and the potential for propagating drug resistance genotypes respectively. RESULTS: The majority of imported malaria cases were P. vivax, while P. falciparum and mixed species infections (P. falciparum / P. vivax) were less frequent. The primary origin of P. vivax infection was the Indian subcontinent, while P. falciparum was mostly presented by African expatriates. Imported P. falciparum strains were highly diverse, carrying multiple genotypes, and infections also presented with early- and late-stage gametocytes. We observed a high prevalence of mutations implicated in drug resistance among these strains, including novel SNPs in Pfkelch13. CONCLUSIONS: The influx of genetically diverse P. falciparum, with multiple drug resistance markers and a high capacity for gametocyte production, represents a threat for the reestablishment of drug-resistant malaria into GCC countries. This scenario highlights the impact of mass international migration on the reintroduction of malaria to areas with absent or limited local transmission.


Subject(s)
Communicable Diseases, Imported/transmission , Drug Resistance/genetics , Malaria/transmission , Plasmodium falciparum/genetics , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/parasitology , Genetic Variation , Genotype , Humans , Malaria/epidemiology , Malaria/parasitology , Parasite Load , Plasmodium falciparum/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Prevalence , Qatar/epidemiology
11.
PeerJ ; 7: e8133, 2019.
Article in English | MEDLINE | ID: mdl-31824766

ABSTRACT

BACKGROUND: Multiple factors can influence stool sample integrity upon sample collection. Preservation of faecal samples for microbiome studies is therefore an important step, particularly in tropical regions where resources are limited and high temperatures may significantly influence microbiota profiles. Freezing is the accepted standard to preserve faecal samples however, cold chain methods are often unfeasible in fieldwork scenarios particularly in low and middle-income countries and alternatives are required. This study therefore aimed to address the impact of different preservative methods, time-to-freezing at ambient tropical temperatures, and stool heterogeneity on stool microbiome diversity and composition under real-life physical environments found in resource-limited fieldwork conditions. METHODS: Inner and outer stool samples collected from one specimen obtained from three children were stored using different storage preservation methods (raw, ethanol and RNAlater) in a Ugandan field setting. Mixed stool was also stored using these techniques and frozen at different time-to-freezing intervals post-collection from 0-32 h. Metataxonomic profiling was used to profile samples, targeting the V1-V2 regions of 16S rRNA with samples run on a MiSeq platform. Reads were trimmed, combined and aligned to the Greengenes database. Microbial diversity and composition data were generated and analysed using Quantitative Insights Into Microbial Ecology and R software. RESULTS: Child donor was the greatest predictor of microbiome variation between the stool samples, with all samples remaining identifiable to their child of origin despite the stool being stored under a variety of conditions. However, significant differences were observed in composition and diversity between preservation techniques, but intra-preservation technique variation was minimal for all preservation methods, and across the time-to-freezing range (0-32 h) used. Stool heterogeneity yielded no apparent microbiome differences. CONCLUSIONS: Stool collected in a fieldwork setting for comparative microbiome analyses should ideally be stored as consistently as possible using the same preservation method throughout.

13.
Wellcome Open Res ; 4: 76, 2019.
Article in English | MEDLINE | ID: mdl-31544155

ABSTRACT

Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.

14.
Science ; 365(6456)2019 08 30.
Article in English | MEDLINE | ID: mdl-31467193

ABSTRACT

The requirement for next-generation antimalarials to be both curative and transmission-blocking necessitates the identification of previously undiscovered druggable molecular pathways. We identified a selective inhibitor of the Plasmodium falciparum protein kinase PfCLK3, which we used in combination with chemogenetics to validate PfCLK3 as a drug target acting at multiple parasite life stages. Consistent with a role for PfCLK3 in RNA splicing, inhibition resulted in the down-regulation of more than 400 essential parasite genes. Inhibition of PfCLK3 mediated rapid killing of asexual liver- and blood-stage P. falciparum and blockade of gametocyte development, thereby preventing transmission, and also showed parasiticidal activity against P. berghei and P. knowlesi Hence, our data establish PfCLK3 as a target for drugs, with the potential to offer a cure-to be prophylactic and transmission blocking in malaria.


Subject(s)
Antimalarials/pharmacology , Molecular Targeted Therapy , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Animals , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/therapeutic use , Gametogenesis/drug effects , High-Throughput Screening Assays , Mice , Mice, Inbred BALB C , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Protozoan Proteins/genetics , RNA Splicing/genetics , Small Molecule Libraries/pharmacology
15.
Malar J ; 18(1): 137, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30995912

ABSTRACT

Following publication of the original article [1], it was flagged that the name of the author Lisa Ranford-Cartwright had been (incorrectly) given as 'Lisa-Ranford Cartwright.

16.
Malar J ; 18(1): 85, 2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30890179

ABSTRACT

BACKGROUND: Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors. METHODS: A total of 750 Anopheles gambiae (Keele strain) mosquitoes were fed Plasmodium falciparum NF54 gametocytes through standard membrane feeding assay (SMFA) and afterwards maintained in insectary conditions to allow for oocyst (8 days) and sporozoite development (14 days). Thereupon, each mosquito was scanned using near infra-red spectroscopy (NIRS) and processed by quantitative polymerase chain reaction (qPCR) to determine the presence of infection and infection load. The spectra collected were randomly assigned to either a training dataset, used to develop calibrations for predicting oocyst- or sporozoite-infection through partial least square regressions (PLS); or to a test dataset, used for validating the calibration's prediction accuracy. RESULTS: NIRS detected oocyst- and sporozoite-stage P. falciparum infections with 88% and 95% accuracy, respectively. This study demonstrates proof-of-concept that NIRS is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors. CONCLUSIONS: Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes.


Subject(s)
Anopheles/parasitology , Entomology/methods , Plasmodium falciparum/growth & development , Spectroscopy, Near-Infrared/methods , Animals , Female , Mass Screening/methods , Parasite Load , Real-Time Polymerase Chain Reaction
17.
Trends Parasitol ; 35(3): 226-238, 2019 03.
Article in English | MEDLINE | ID: mdl-30594415

ABSTRACT

A mosquito needs to ingest at least one male and one female gametocyte to become infected with malaria. The sex of Plasmodium falciparum gametocytes can be determined microscopically but recent transcriptomics studies paved the way for the development of molecular methods that allow sex-ratio assessments at much lower gametocyte densities. These sex-specific gametocyte diagnostics were recently used to examine gametocyte dynamics in controlled and natural infections as well as the impact of different antimalarial drugs. It is currently unclear to what extent sex-specific gametocyte diagnostics obviate the need for mosquito feeding assays to formally assess transmission potential. Here, we review recent and historic assessments of gametocyte sex ratio in relation to host and parasite characteristics, treatment, and transmission potential.


Subject(s)
Culicidae/parasitology , Host-Parasite Interactions , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Sex Ratio , Animals , Humans , Transcriptome
18.
Cell Immunol ; 334: 11-19, 2018 12.
Article in English | MEDLINE | ID: mdl-30177348

ABSTRACT

Vγ9Vδ2 T cells, the dominant γδ T cell subset in human peripheral blood, are stimulated by phosphoantigens, of which (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate, is produced in the apicoplast of malaria parasites. Cell-free media from synchronised Plasmodium falciparum asexual ring, trophozoite, and schizont stage-cultures of high purity as well as media from ruptured schizont cultures, all stimulated Vγ9Vδ2 T cell proliferation, as did media from pure gametocyte cultures, whereas media from uninfected erythrocytes cultures did not. The media from ruptured schizont cultures and all the asexual and gametocyte stage cultures contained only background iron levels, suggesting that all erythrocyte haemoglobin is consumed as the parasites develop and supporting that the phosphoantigens were released from intact parasitized erythrocytes. The Vγ9Vδ2 T cell-stimulating agent was not affected by freezing, thawing or heating but was sensitive to phosphatase treatment, confirming its phosphoantigen identity. In summary, phosphoantigens are released from parasitised erythrocytes at all developmental blood stages.


Subject(s)
Antigens/immunology , Cell Proliferation/physiology , Erythrocytes/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , T-Lymphocytes/immunology , Hemoglobins/immunology , Humans
19.
Elife ; 72018 01 13.
Article in English | MEDLINE | ID: mdl-29331015

ABSTRACT

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.


Subject(s)
Blood Cells/cytology , Blood Cells/physiology , Cytological Techniques/methods , Diagnostic Tests, Routine/methods , Single-Cell Analysis/methods , Humans
20.
Sci Rep ; 7: 40520, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094293

ABSTRACT

The efficiency of malaria parasite development within mosquito vectors (sporogony) is a critical determinant of transmission. Sporogony is thought to be controlled by environmental conditions and mosquito/parasite genetic factors, with minimal contribution from mosquito behaviour during the period of parasite development. We tested this assumption by investigating whether successful sporogony of Plasmodium falciparum parasites through to human-infectious transmission stages is influenced by the host species upon which infected mosquitoes feed. Studies were conducted on two major African vector species that generally are found to differ in their innate host preferences: Anopheles arabiensis and An. gambiae sensu stricto. We show that the proportion of vectors developing transmissible infections (sporozoites) was influenced by the source of host blood consumed during sporogony. The direction of this effect was associated with the innate host preference of vectors: higher sporozoite prevalences were generated in the usually human-specialist An. gambiae s.s. feeding on human compared to cow blood, whereas the more zoophilic An. arabiensis had significantly higher prevalences after feeding on cow blood. The potential epidemiological implications of these results are discussed.


Subject(s)
Host-Parasite Interactions , Malaria/parasitology , Malaria/transmission , Mosquito Vectors/parasitology , Plasmodium , Vertebrates , Animals , Malaria/epidemiology , Parasite Load , Plasmodium falciparum , Prevalence , Salivary Glands/parasitology , Sporozoites
SELECTION OF CITATIONS
SEARCH DETAIL
...