Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Brief Funct Genomics ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832682

ABSTRACT

Sesame (Sesamum indicum L.) is a globally cultivated oilseed crop renowned for its historical significance and widespread growth in tropical and subtropical regions. With notable nutritional and medicinal attributes, sesame has shown promising effects in combating malnutrition cancer, diabetes, and other diseases like cardiovascular problems. However, sesame production faces significant challenges from environmental threats such as charcoal rot, drought, salinity, and waterlogging stress, resulting in economic losses for farmers. The scarcity of information on stress-resistance genes and pathways exacerbates these challenges. Despite its immense importance, there is currently no platform available to provide comprehensive information on sesame, which significantly hinders the mining of various stress-associated genes and the molecular breeding of sesame. To address this gap, here a free, web-accessible, and user-friendly genomic web resource (SesameGWR, http://backlin.cabgrid.res.in/sesameGWR/) has been developed This platform provides key insights into differentially expressed genes, transcription factors, miRNAs, and molecular markers like simple sequence repeats, single nucleotide polymorphisms, and insertions and deletions associated with both biotic and abiotic stresses.. The functional genomics information and annotations embedded in this web resource were predicted through RNA-seq data analysis. Considering the impact of climate change and the nutritional and medicinal importance of sesame, this study is of utmost importance in understanding stress responses. SesameGWR will serve as a valuable tool for developing climate-resilient sesame varieties, thereby enhancing the productivity of this ancient oilseed crop.

2.
Plant Genome ; : e20447, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38628142

ABSTRACT

Sesame (Sesamum indicum L.) is an ancient oilseed crop belonging to the family Pedaliaceae and a globally cultivated crop for its use as oil and food. In this study, 2496 sesame accessions, being conserved at the National Genebank of ICAR-National Bureau of Plant Genetic Resources (NBPGR), were genotyped using genomics-assisted double-digest restriction-associated DNA sequencing (ddRAD-seq) approach. A total of 64,910 filtered single-nucleotide polymorphisms (SNPs) were utilized to assess the genome-scale diversity. Applications of this genome-scale information (reduced representation using restriction enzymes) are demonstrated through the development of a molecular core collection (CC) representing maximal SNP diversity. This information is also applied in developing a mid-density panel (MDP) comprising 2515 hyper-variable SNPs, representing almost equally the genic and non-genic regions. The sesame CC comprising 384 accessions, a representative set of accessions with maximal diversity, was identified using multiple criteria such as k-mer (subsequence of length "k" in a sequence read) diversity, observed heterozygosity, CoreHunter3, GenoCore, and genetic differentiation. The coreset constituted around 15% of the total accessions studied, and this small subset had captured >60% SNP diversity of the entire population. In the coreset, the admixture analysis shows reduced genetic complexity, increased nucleotide diversity (π), and is geographically distributed without any repetitiveness in the CC germplasm. Within the CC, India-originated accessions exhibit higher diversity (as expected based on the center of diversity concept), than those accessions that were procured from various other countries. The identified CC set and the MDP will be a valuable resource for genomics-assisted accelerated sesame improvement program.

3.
Mol Biol Rep ; 51(1): 489, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578370

ABSTRACT

BACKGROUND: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging. METHODS AND RESULTS: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus. CONCLUSIONS: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.


Subject(s)
Trigonella , Animals , Trigonella/genetics , Trigonella/chemistry , Genome Size , Flow Cytometry , Plant Extracts , Biological Evolution
4.
Biosystems ; 238: 105195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38555052

ABSTRACT

A non-Kranz C4 photosynthesis of the NAD-ME subtype, specifically in developing wheat grains (14 dpa, days post-anthesis) was originally demonstrated using transcriptome-based RNA-seq. Here we present a re-examination of evidence for C4 photosynthesis in the developing grains of wheat and, more broadly, the Pooideae and an investigation of the evolutionary processes and implications. The expression profiles for the genes associated with C4 photosynthesis (C4- and C3-specific) were evaluated using published transcriptome data for the outer pericarp, inner pericarp, and endosperm tissues of the developing wheat grains. The expression of the C4-specific genes across these three tissues revealed the involvement of all three tissues in an orderly fashion to accomplish the non-Kranz NAD-ME-dependent C4 photosynthesis. Based on their expression levels in RPKM (reads per kilobase per million mapped reads) values, a model involving multiple cell- and tissue-types is proposed for C4 photosynthesis involved in the refixation of the respired CO2 from the endosperm tissues in the developing wheat grains. This multi-cell C4 model, proposed to involve more than two cell types, requires further biochemical validation.


Subject(s)
Transcriptome , Triticum , Triticum/genetics , Transcriptome/genetics , NAD/genetics , NAD/metabolism , Plant Leaves , Photosynthesis/genetics
6.
Life (Basel) ; 13(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37629524

ABSTRACT

Sequencing technologies have rapidly evolved over the past two decades, and new technologies are being continually developed and commercialized. The emerging sequencing technologies target generating more data with fewer inputs and at lower costs. This has also translated to an increase in the number and type of corresponding applications in genomics besides enhanced computational capacities (both hardware and software). Alongside the evolving DNA sequencing landscape, bioinformatics research teams have also evolved to accommodate the increasingly demanding techniques used to combine and interpret data, leading to many researchers moving from the lab to the computer. The rich history of DNA sequencing has paved the way for new insights and the development of new analysis methods. Understanding and learning from past technologies can help with the progress of future applications. This review focuses on the evolution of sequencing technologies, their significant enabling role in generating plant genome assemblies and downstream applications, and the parallel development of bioinformatics tools and skills, filling the gap in data analysis techniques.

8.
PLoS One ; 18(6): e0286599, 2023.
Article in English | MEDLINE | ID: mdl-37267340

ABSTRACT

To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.


Subject(s)
Sesamum , Sesamum/genetics , Genome , Genotype , Sequence Analysis, DNA/methods , Base Sequence
9.
Front Plant Sci ; 14: 1161499, 2023.
Article in English | MEDLINE | ID: mdl-37235027

ABSTRACT

Small cardamom (Elettaria cardamomum Maton), the queen of spices, is the third most expensive spice in the world after saffron and vanilla, valued highly for its aroma and taste. This perennial herbaceous plant is a native of coastal parts of Southern India and displays a significant amount of morphological diversity. Its genetic potential has not been exploited due to lack of genomic resources limiting our understanding of the genome and important metabolic pathways which give it the economic advantage in the spice industry. Here, we report upon the de novo assembled, draft whole genome sequence of cardamom variety, Njallani Green Gold. We used a hybrid assembly strategy using the reads from the Oxford Nanopore, Illumina and 10x Genomics GemCode sequencing chemistries. The assembled genome length was 1.06 Gb (gigabases) which is close to the estimated genome size of cardamom. More than 75% of the genome was captured in 8000 scaffolds with a N50 of 0.15 Mb. The genome appears to have a high repeat content and 68055 gene models were predicted. The genome is close to Musa species and displays an expansion and contraction in different gene families. The draft assembly was used for in silico mining of simple sequence repeats (SSRs). A total of 2,50,571 SSRs were identified of which 2,18,270 were perfect SSRs and 32,301 were compound SSRs. Among the perfect SSRs, trinucleotides were most abundant (1,25,329) and hexanucleotide repeats appear least (2,380). From the 2,50,571 SSRs mined, 2,27,808 primer pairs were designed based on flanking sequence information. Wet lab validation was performed for 246 SSR loci and based on their amplification profiles, 60 SSR markers were used for diversity analysis of a set of 60 diverse cardamom accessions. The average number of alleles detected per locus were 14.57 with a minimum of 4 and maximum of 30 alleles. Population structure analysis revealed the presence of high degree of admixtures which could primarily be due to cross-pollination prevalent in this species. The SSR markers identified would help in the development of gene or trait-linked markers which can be subsequently used for marker-assisted breeding for crop improvement in cardamom. The information on utilization of the SSR loci for generation of markers has been developed into a public database, 'cardamomSSRdb' that is freely available for use by the cardamom community.

10.
Plants (Basel) ; 11(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365434

ABSTRACT

Sesame, one of the ancient oil crops, is an important oilseed due to its nutritionally rich seeds with high protein content. Genomic scale information for sesame has become available in the public databases in recent years. The genes and their families involved in oil biosynthesis in sesame are less studied than in other oilseed crops. Therefore, we retrieved a total of 69 genes and their translated amino acid sequences, associated with gene families linked to the oil biosynthetic pathway. Genome-wide in silico mining helped identify key regulatory genes for oil biosynthesis, though the findings require functional validation. Comparing sequences of the SiSAD (stearoyl-acyl carrier protein (ACP)-desaturase) coding genes with known SADs helped identify two SiSAD family members that may be palmitoyl-ACP-specific. Based on homology with lysophosphatidic acid acyltransferase (LPAAT) sequences, an uncharacterized gene has been identified as SiLPAAT1. Identified key regulatory genes associated with high oil content were also validated using publicly available transcriptome datasets of genotypes contrasting for oil content at different developmental stages. Our study provides evidence that a longer duration of active oil biosynthesis is crucial for high oil accumulation during seed development. This underscores the importance of early onset of oil biosynthesis in developing seeds. Up-regulating, identified key regulatory genes of oil biosynthesis during early onset of seed development, should help increase oil yields.

11.
Plant Direct ; 6(6): e399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35774621

ABSTRACT

There are three pathways for triacylglycerol (TAG) biosynthesis: De novo TAG biosynthesis, phosphatidylcholine-derived biosynthesis, and cytosolic TAG biosynthesis. Variability in fatty acid composition is mainly associated with phosphatidylcholine-derived TAG pathway. Mobilization of TAG-formed through cytosolic pathway into lipid droplets is yet unknown. There are multiple regulatory checkpoints starting from acetyl-CoA carboxylase to the lipid droplet biogenesis in TAG biosynthesis. Although a primary metabolism, only a few species synthesize oil in seeds for storage, and less than 10 species are commercially exploited. To meet out the growing demand for oil, diversifying into newer sources is the only choice left. The present review highlights the potential strategies targeting species like Azadirachta, Callophyllum, Madhuca, Moringa, Pongamia, Ricinus, and Simarouba, which are not being used for eating but are otherwise high yielding (ranging from 1.5 to 20 tons per hectare) with seeds having a high oil content (40-60%). Additionally, understanding the toxin biosynthesis in Ricinus and Simarouba would be useful in developing toxin-free oil plants. Realization of the importance of cell cultures as "oil factories" is not too far into the future and would soon be a commercially viable option for producing oils in vitro, round the clock.

12.
Photosynth Res ; 153(3): 125-134, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35648247

ABSTRACT

Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.


Subject(s)
Poaceae , Ribulose-Bisphosphate Carboxylase , Carbon/metabolism , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Photosynthesis , Plant Leaves/metabolism , Plants/metabolism , Poaceae/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
13.
Front Plant Sci ; 13: 863521, 2022.
Article in English | MEDLINE | ID: mdl-35599863

ABSTRACT

Climate change is shifting agricultural production, which could impact the economic and cultural contexts of the oilseed industry, including sesame. Environmental threats (biotic and abiotic stresses) affect sesame production and thus yield (especially oil content). However, few studies have investigated the genetic enhancement, quality improvement, or the underlying mechanisms of stress tolerance in sesame. This study reveals the challenges faced by farmers/researchers growing sesame crops and the potential genetic and genomic resources for addressing the threats, including: (1) developing sesame varieties that tolerate phyllody, root rot disease, and waterlogging; (2) investigating beneficial agro-morphological traits, such as determinate growth, prostrate habit, and delayed response to seed shattering; (3) using wild relatives of sesame for wide hybridization; and (4) advancing existing strategies to maintain sesame production under changing climatic conditions. Future research programs need to add technologies and develop the best research strategies for economic and sustainable development.

14.
Front Plant Sci ; 13: 1095781, 2022.
Article in English | MEDLINE | ID: mdl-36714762

ABSTRACT

Piper nigrum, also known as black pepper, is an economically and ecologically important crop of the genus Piper. It has been titled as the king of spices due to its wide consumption throughout the world. In the present investigation, the chloroplast genome of P. nigrum has been assembled from a whole genome sequence by integrating the short and long reads generated through Illumina and PacBio platforms, respectively. The chloroplast genome was observed to be 161,522 bp in size, having a quadripartite structure with a large single copy (LSC) region of 89,153 bp and a small single copy (SSC) region of 18,255 bp separated by a copy of inverted repeats (IRs), each 27,057 bp in length. Taking into consideration all the duplicated genes, a total of 131 genes were observed, which included 81 protein-coding genes, 37 tRNAs, 4 rRNAs, and 1 pseudogene. Individually, the LSC region consisted of 83 genes, the SSC region had 13 genes, and 18 genes were present in each IR region. Additionally, 216 SSRs were detected and 11 of these were validated through amplification in 12 species of Piper. The features of the chloroplast genome have been compared with those of the genus Piper. Our results provide useful insights into evolutionary and molecular studies of black pepper which will contribute to its further genetic improvement and breeding.

15.
Biology (Basel) ; 9(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276443

ABSTRACT

Plants have leaves as specialised organs that capture light energy by photosynthesis. However, photosynthesis is also found in other plant organs. Photosynthesis may be found in the petiole, stems, flowers, fruits, and seeds. All photosynthesis can contribute to the capture of carbon and growth of the plant. The benefit to the plant of photosynthesis in these other tissues or organs may often be associated with the need to re-capture carbon especially in storage organs that have high respiration rates. Some plants that conduct C3 photosynthesis in the leaves have been reported to use C4 photosynthesis in petioles, stems, flowers, fruits, or seeds. These pathways of non-leaf photosynthesis may be especially important in supporting plant growth under stress and may be a key contributor to plant growth and survival. Pathways of photosynthesis have directionally evolved many times in different plant lineages in response to environmental selection and may also have differentiated in specific parts of the plant. This consideration may be useful in the breeding of crop plants with enhanced performance in response to climate change.

16.
PLoS One ; 14(12): e0226002, 2019.
Article in English | MEDLINE | ID: mdl-31834893

ABSTRACT

Black pepper is one of the most valued and widely used spices in the world and dominates multi-billion dollar global spices trade. India is amongst the major producers, consumers and exporters of black pepper. In spite of its commercial and cultural importance, black pepper has received meagre attention in terms of generation of genomic resources. Availability of markers distributed throughout the genome would facilitate and accelerate genetic studies, QTL identification, genetic enhancement and crop improvement in black pepper. In this perspective, the sequence information from the recently sequenced black pepper (Piper nigrum) genome has been used for identification and characterisation of Simple Sequence Repeats (SSRs). Total 69,126 SSRs were identified from assembled genomic sequence of P. nigrum. The SSR frequency was 158 per MB making it, one SSR for every 6.3 kb in the assembled genome. Among the different types of microsatellite repeat motifs, dinucleotides were the most abundant (48.6%), followed by trinucleotide (23.7%) and compound repeats (20.62%). A set of 85 SSRs were used for validation, of which 74 produced amplification products of expected size. Genetic diversity of 30 black pepper accessions using 50 SSRs revealed four distinct clusters. Further, the cross species transferability of the SSRs was checked in nine other Piper species. Out of 50 SSRs used, 19 and 31 SSRs were amplified in nine and seven species, respectively. Thus the identified SSRs may have application in other species of the genus Piper where genome sequence is not available yet. Present study reports the first NGS based genomic SSRs in black pepper and thus constitute a valuable resource for a whole fleet of applications in genetics and plant breeding studies such as genetic map construction, QTL identification, map-based gene cloning, marker-assisted selection and evolutionary studies in Piper nigrum and related species.


Subject(s)
Genome, Plant , Microsatellite Repeats/genetics , Piper nigrum/genetics , Genetic Variation , Genomics/methods , Quantitative Trait Loci
17.
Curr Opin Plant Biol ; 45(Pt B): 231-236, 2018 10.
Article in English | MEDLINE | ID: mdl-29779965

ABSTRACT

Analysis of the transcriptome of the developing wheat grain has associated expression of genes with traits involving production (e.g. yield) and quality (e.g. bread quality). Photosynthesis in the grain may be important in retaining carbon that would be lost in respiration during grain filling and may contribute to yield in the late stages of seed formation under warm and dry environments. A small number of genes have been identified as having been selected by humans to optimize the performance of wheat for foods such as bread. Genes determining flour yield in milling have been discovered. Hardness is explained by variations in expression of pin genes. Knowledge of these genes should dramatically improve the efficiency of breeding better climate adapted wheat genotypes.


Subject(s)
Seeds/genetics , Transcriptome/genetics , Triticum/genetics , Acclimatization/physiology , Adaptation, Physiological/physiology , Humans
18.
Sci Rep ; 7(1): 12539, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970511

ABSTRACT

A large portion of the global wheat crop is milled to produce flour for use in the production of foods such as bread. Pressure to increase food supplies sustainably can be address directly by reducing post-harvest losses during processes such as flour milling. The recovery of flour in the milling of wheat is genetically determined but difficult to assess in wheat breeding due to the requirement for a large sample. Here we report the discovery that human selection for altered expression of putative cell adhesion proteins is associated with wheats that give high yields of flour on milling. Genes encoding fasciclin-like arabinogalactan proteins are expressed at low levels in high milling wheat genotypes at mid grain development. Thirty worldwide wheat genotypes were grouped into good and poor millers based flour yield obtained from laboratory scale milling of mature seeds. Differentially expressed genes were identified by comparing transcript profiles at 14 and 30 days post anthesis obtained from RNA-seq data of all the genotypes. Direct selection for genotypes with appropriate expression of these genes will greatly accelerate wheat breeding and ensure high recoveries of flour from wheat by resulting in grains that break up more easily on milling.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Flour , Mucoproteins/genetics , Triticum/genetics , Bread , Edible Grain/genetics , Gene Expression Regulation, Plant , Humans , Plant Proteins/genetics , Seeds/genetics , Seeds/growth & development , Triticum/growth & development
19.
BMC Genomics ; 18(1): 766, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29020946

ABSTRACT

BACKGROUND: Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. RESULTS: The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. CONCLUSIONS: This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Gene Expression Profiling , Nutritive Value/genetics , Seeds/growth & development , Triticum/growth & development , Triticum/genetics , Chromosome Mapping , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...