Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cancer Immunol Res ; 9(12): 1451-1464, 2021 12.
Article in English | MEDLINE | ID: mdl-34635485

ABSTRACT

Immune-checkpoint blockade has revolutionized cancer treatment. However, most patients do not respond to single-agent therapy. Combining checkpoint inhibitors with other immune-stimulating agents increases both efficacy and toxicity due to systemic T-cell activation. Protease-activatable antibody prodrugs, known as Probody therapeutics (Pb-Tx), localize antibody activity by attenuating capacity to bind antigen until protease activation in the tumor microenvironment. Herein, we show that systemic administration of anti-programmed cell death ligand 1 (anti-PD-L1) and anti-programmed cell death protein 1 (anti-PD-1) Pb-Tx to tumor-bearing mice elicited antitumor activity similar to that of traditional PD-1/PD-L1-targeted antibodies. Pb-Tx exhibited reduced systemic activity and an improved nonclinical safety profile, with markedly reduced target occupancy on peripheral T cells and reduced incidence of early-onset autoimmune diabetes in nonobese diabetic mice. Our results confirm that localized PD-1/PD-L1 inhibition by Pb-Tx can elicit robust antitumor immunity and minimize systemic immune-mediated toxicity. These data provide further preclinical rationale to support the ongoing development of the anti-PD-L1 Pb-Tx CX-072, which is currently in clinical trials.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen/therapeutic use , Immunotherapy/methods , Amino Acid Sequence , Animals , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/pharmacology , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Tumor Microenvironment
2.
J Am Soc Mass Spectrom ; 32(7): 1567-1574, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33415981

ABSTRACT

NK group 2 member A (NKG2A), an immune checkpoint inhibitor, is an emerging therapeutic target in immuno-oncology. NKG2A forms a heterodimer with CD94 on the cell surface of NK and a subset of T cells and recognizes the nonclassical human leukocyte antigen (HLA-E) in humans. Therapeutic blocking antibodies that block the ligation between HLA-E and NKG2A/CD94 have been shown to enhance antitumor immunity in mice and humans. In this study, we illustrate the practical utilities of mass spectrometry (MS)-based protein footprinting in areas from reagent characterization to antibody epitope mapping. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) in the higher-order structure characterization of NKG2A in complex with CD94 provides novel insights into the conformational dynamics of NKG2A/CD94 heterodimer. To fully understand antibody/target interactions, we employed complementary protein footprinting methods, including HDX-MS and fast photochemical oxidation of proteins (FPOP)-MS, to determine the binding epitopes of therapeutic monoclonal antibodies targeting NKG2A. Such a combination approach provides molecular insights into the binding mechanisms of antibodies to NKG2A with high specificity, demonstrating the blockade of NKG2A/HLA-E interaction.


Subject(s)
Antibodies , Hydrogen Deuterium Exchange-Mass Spectrometry/methods , NK Cell Lectin-Like Receptor Subfamily C , NK Cell Lectin-Like Receptor Subfamily D , Protein Footprinting/methods , Antibodies/chemistry , Antibodies/metabolism , Epitope Mapping , Epitopes , Humans , NK Cell Lectin-Like Receptor Subfamily C/chemistry , NK Cell Lectin-Like Receptor Subfamily C/metabolism , NK Cell Lectin-Like Receptor Subfamily D/chemistry , NK Cell Lectin-Like Receptor Subfamily D/metabolism
3.
J Med Chem ; 63(22): 13913-13950, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33155811

ABSTRACT

A series of tetrahydroisoquinoline-based benzodiazepine dimers were synthesized and tested for in vitro cytotoxicity against a panel of cancer cell lines. Structure-activity relationship investigation of various spacers guided by molecular modeling studies helped to identify compounds with picomolar activity. Payload 17 was conjugated to anti-mesothelin and anti-fucosylated monosialotetrahexosylganglioside (FucGM1) antibodies using lysosome-cleavable valine-citrulline dipeptide linkers via heterogeneous lysine conjugation and bacterial transglutaminase-mediated site-specific conjugation. In vitro, these antibody drug conjugates (ADCs) exhibited significant cytotoxic and target-mediated selectivity on human cancer cell lines. The pharmacokinetics and efficacy of these ADCs were further evaluated in gastric and lung cancer xenograft models in mice. Consistent pharmacokinetic profiles, high target specificity, and robust antitumor activity were observed in these models after a single dose of the ADC-46 (0.02 µmol/kg).


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/pharmacology , Benzodiazepines/chemistry , Drug Design , Immunoconjugates/pharmacology , Small Cell Lung Carcinoma/drug therapy , Stomach Neoplasms/drug therapy , Tetrahydroisoquinolines/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/chemistry , Apoptosis , Benzodiazepines/metabolism , Cell Proliferation , Female , G(M1) Ganglioside/analogs & derivatives , G(M1) Ganglioside/immunology , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mesothelin , Mice , Mice, SCID , Small Cell Lung Carcinoma/pathology , Stomach Neoplasms/pathology , Structure-Activity Relationship , Tetrahydroisoquinolines/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Bioconjug Chem ; 31(10): 2350-2361, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32881482

ABSTRACT

Antibody-drug conjugates (ADCs) use antibodies to deliver cytotoxic payloads directly into tumor cells via specifically binding to the target cell surface antigens. ADCs can enhance the anti-tumor effects of antibodies, and increase the delivery of cytotoxic payloads to cancer cells with a better therapeutic index. An ADC was prepared with a potent carbamate-containing tubulysin analogue attached to an anti-mesothelin antibody via a Cit-Val dipeptide linker. An aniline functionality in the tubulysin analogue was created to provide a site of linker attachment via an amide bond that would be stable in systemic circulation. Upon ADC internalization into antigen-positive cancer cells, the Cit-Val dipeptide linker was cleaved by lysosomal proteases, and the drug was released inside the tumor cells. The naturally occurring acetate of tubulysin was modified to a carbamate to reduce acetate hydrolysis of the ADC in circulation and to increase the hydrophilicity of the drug. The ADC bearing the monoclonal anti-mesothelin antibody and the carbamate-containing tubulysin was highly potent and immunologically specific to H226 human lung carcinoma cells in vitro, and efficacious at well-tolerated doses in a mesothelin-positive OVCAR3 ovarian cancer xenograft mouse model.


Subject(s)
Antineoplastic Agents/chemistry , Carbamates/chemistry , GPI-Linked Proteins/antagonists & inhibitors , Immunoconjugates/chemistry , Oligopeptides/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacology , Female , Humans , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Mesothelin , Mice , Mice, SCID , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Ovarian Neoplasms/drug therapy
5.
Anal Bioanal Chem ; 412(7): 1693-1700, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31993727

ABSTRACT

Major histocompatibility complex class I chain-related A and B (MICA/B) are cell-surface proteins that act as ligands to natural killer cell receptors, NKG2D, expressed on immune cells. Prevention of proteolytic shedding of MICA/B to retain their integrity on the cell surface has become a therapeutic strategy in immuno-oncology. Given the unique mechanism of MICA/B shedding, structural characterization of MICA/B and therapeutic agent interaction is important in the drug discovery process. In this study, we describe the practical utility of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in epitope mapping studies of a cohort of four monoclonal antibodies targeting MICA in a rapid manner. HDX-MS followed by electron-transfer dissociation allows high-resolution refinement of binding epitopes. This integrated strategy offers, for the first time, molecular-level understanding of MICA's conformational dynamics in solution as well as the unique mechanism of actions of these antibodies in targeting MICA. Graphical abstract.


Subject(s)
Antibodies, Monoclonal/immunology , Deuterium Exchange Measurement/methods , Epitope Mapping/methods , Histocompatibility Antigens Class I/immunology , Mass Spectrometry/methods , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Electron Transport , Humans
6.
Bioorg Med Chem Lett ; 30(1): 126782, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31767265

ABSTRACT

Uncialamycin is one of the structurally simpler and newer members of enediyne family of natural products. It exhibits highly potent activity against several types of bacteria and cancer cells. Described herein is a strategy for the targeted delivery of this cytotoxic agent to tumors using an antibody-drug conjugate (ADC) approach. Central to the design of ADC were the generation of potent and chemically stable uncialamycin analogues and attachment of protease cleavable linkers to newly realized phenolic handles to prepare linker-payloads. Conjugation of the linker-payloads to tumor targeting antibody, in vitro activity and in vivo evaluation are presented.


Subject(s)
Anthraquinones/chemistry , Anthraquinones/chemical synthesis , Antineoplastic Agents/therapeutic use , Immunoconjugates/chemistry , Anthraquinones/therapeutic use , Antineoplastic Agents/pharmacology , Humans , Structure-Activity Relationship
7.
Anal Chem ; 92(2): 2065-2073, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31860282

ABSTRACT

Antibody drug conjugates (ADCs) can undergo in vivo biotransformation (e.g., payload metabolism, deconjugation) leading to reduced or complete loss of activity. The location/site of conjugation of payload-linker can have an effect on ADC stability and hence needs to be carefully optimized. Affinity capture LC-MS of intact ADCs or ADC subfragments has been extensively used to evaluate ADC biotransformation. However, the current methods have certain limitations such as the requirement of specific capture reagents, limited mass resolution of low mass change metabolites, low sensitivity, and use of capillary or nanoflow LC-MS. To address these challenges, we developed a generic affinity capture LC-MS assay that can be utilized to evaluate the biotransformation of any site-specific ADC independent of antibody type and site of conjugation (Fab and Fc) in preclinical studies. The method involves a combination of some or all of these steps: (1) "mono capture" or "dual capture" of ADCs from serum with streptavidin magnetic beads coated with a generic biotinylated antihuman capture reagent, (2) "on-bead" digestion with IdeS and/or PNGase F, and (3) reduction of interchain disulfide bonds to generate ∼25 kDa ADC subfragments, which are finally analyzed by LC-HRMS on a TOF mass spectrometer. The advantages of this method are that it can be performed using commercially available generic reagents and requires sample preparation time of less than 7 h. Furthermore, by reducing the size of intact ADC (∼150 kDa) to subfragments (∼25 kDa), the identification of conjugated payload and its metabolites can be achieved with excellent sensitivity and resolution (hydrolysis and other small mass change metabolites). This method was successfully applied to evaluate the in vitro and in vivo biotransformation of ADCs conjugated at different sites (LC, HC-Fab, and HC-Fc) with various classes of payload-linkers.


Subject(s)
Biotransformation , Immunoconjugates/blood , Immunoconjugates/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Chromatography, Liquid , Humans , Mass Spectrometry
8.
J Clin Invest ; 129(12): 5553-5567, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31710313

ABSTRACT

Immune checkpoint inhibitors (ICIs), although promising, have variable benefit in head and neck cancer (HNC). We noted that tumor galectin-1 (Gal1) levels were inversely correlated with treatment response and survival in patients with HNC who were treated with ICIs. Using multiple HNC mouse models, we show that tumor-secreted Gal1 mediates immune evasion by preventing T cell migration into the tumor. Mechanistically, Gal1 reprograms the tumor endothelium to upregulate cell-surface programmed death ligand 1 (PD-L1) and galectin-9. Using genetic and pharmacological approaches, we show that Gal1 blockade increases intratumoral T cell infiltration, leading to a better response to anti-PD1 therapy with or without radiotherapy. Our study reveals the function of Gal1 in transforming the tumor endothelium into an immune-suppressive barrier and that its inhibition synergizes with ICIs.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Endothelium/physiology , Galectin 1/physiology , Head and Neck Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Animals , B7-H1 Antigen/physiology , Female , Galectin 1/antagonists & inhibitors , Galectins/physiology , Head and Neck Neoplasms/immunology , Humans , Immune Tolerance , Immunotherapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , STAT1 Transcription Factor/physiology
9.
Bioorg Med Chem Lett ; 29(3): 466-470, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30579797

ABSTRACT

Uncialamycin analogs were evaluated as potential cytotoxic agents in an antibody-drug conjugate (ADC) approach to treating human cancer. These analogs were synthesized using Hauser annulations of substituted phthalides as a key step. A highly potent uncialamycin analog 3c with a valine-citrulline dipeptide linker was conjugated to an anti-mesothelin monoclonal antibody (mAb) through lysines to generate a meso-13 conjugate. This conjugate demonstrated subnanomolar potency (IC50 = 0.88 nM, H226 cell line) in in vitro cytotoxicity experiments with good immunological specificity to mesothelin-positive lung cancer cell lines. The potency and mechanism of action of this uncialamycin class of enediyne antitumor antibiotics make them attractive payloads in ADC-based cancer therapy.


Subject(s)
Anthraquinones/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Immunoconjugates/pharmacology , Lung Neoplasms/drug therapy , Anthraquinones/chemistry , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Immunoconjugates/chemistry , Lung Neoplasms/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship
10.
Clin Cancer Res ; 24(20): 5178-5189, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30021910

ABSTRACT

Purpose: The ganglioside fucosyl-GM1 (FucGM1) is a tumor-associated antigen expressed in a large percentage of human small cell lung cancer (SCLC) tumors, but absent in most normal adult tissues, making it a promising target in immuno-oncology. This study was undertaken to evaluate the preclinical efficacy of BMS-986012, a novel, nonfucosylated, fully human IgG1 antibody that binds specifically to FucGM1.Experimental Design: The antitumor activity of BMS-986012 was evaluated in in vitro assays using SCLC cells and in mouse xenograft and syngeneic tumor models, with and without chemotherapeutic agents and checkpoint inhibitors.Results: BMS-986012 showed a high binding affinity for FcγRIIIa (CD16), which resulted in enhanced antibody-dependent cellular cytotoxicity (ADCC) against FucGM1-expressing tumor cell lines. BMS-986012-mediated tumor cell killing was also observed in complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP) assays. In several mouse SCLC models, BMS-986012 demonstrated efficacy and was well tolerated. In the DMS79 xenograft model, tumor regression was achieved with BMS-986012 doses of 0.3 mg/kg and greater; antitumor activity was enhanced when BMS-986012 was combined with standard-of-care cisplatin or etoposide. In a syngeneic model, tumors derived from a genetically engineered model of SCLC were treated with BMS-986012 or anti-FucGM1 with a mouse IgG2a Fc and their responses evaluated; when BMS-986012 was combined with anti-PD-1 or anti-CD137 antibody, therapeutic responses significantly improved.Conclusions: Single-agent BMS-986012 demonstrated robust antitumor activity, with the addition of chemotherapeutic or immunomodulatory agents further inhibiting SCLC growth in the same models. These preclinical data supported evaluation of BMS-986012 in a phase I clinical trial of patients with relapsed, refractory SCLC. Clin Cancer Res; 24(20); 5178-89. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , G(M1) Ganglioside/analogs & derivatives , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Antigens, Neoplasm/immunology , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , G(M1) Ganglioside/antagonists & inhibitors , G(M1) Ganglioside/immunology , G(M1) Ganglioside/metabolism , Humans , Immunohistochemistry , Immunomodulation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Protein Binding , Receptors, IgG/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors , Xenograft Model Antitumor Assays
11.
J Leukoc Biol ; 102(5): 1271-1280, 2017 11.
Article in English | MEDLINE | ID: mdl-28899907

ABSTRACT

IFN-γ-inducible protein 10 (CXCL10), a chemokine that is abundantly secreted in response to inflammatory stimuli, has been implicated in the pathogenesis of multiple inflammatory diseases, such as inflammatory bowel disease. Whereas CXCL10 is traditionally recognized for recruiting pathogenic T cells to inflamed sites, its nonchemotactic role during inflammation remains poorly defined. In this report, we identified a novel function of CXCL10 in the regulation of the inflammatory potential of human monocytes to produce cytokines. We found that CXCL10 was necessary and sufficient for IFN-γ-primed human monocytes to induce a robust production of proinflammatory cytokines, such as IL-12 and IL-23. CXCL10-induced monocyte production of these cytokines depended on CXCR3 receptor engagement as well as on the Iκ B kinase and p38 MAPK signaling pathways. By using an innate-mediated murine colitis model, we demonstrated that anti-CXCL10 Ab treatment robustly suppressed the local production of myeloid-derived inflammatory cytokines and intestinal tissue damage. Together, our data unravel a previously unappreciated role of CXCL10 in the amplification of myeloid cell-mediated inflammatory responses. Targeting CXCL10 is therefore an attractive approach to treating inflammatory diseases that are driven by innate and adaptive immunity.


Subject(s)
Adaptive Immunity , Chemokine CXCL10/immunology , Colitis, Ulcerative/immunology , Crohn Disease/immunology , Immunity, Innate , Monocytes/immunology , Animals , Antibodies, Neutralizing/administration & dosage , CD40 Antigens/antagonists & inhibitors , Chemokine CXCL10/antagonists & inhibitors , Chemokine CXCL10/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Colitis/pathology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Crohn Disease/genetics , Crohn Disease/pathology , Female , Gene Expression Regulation , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Male , Mice , Mice, Inbred BALB C , Monocytes/cytology , Primary Cell Culture , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology
12.
Proc Natl Acad Sci U S A ; 114(21): E4223-E4232, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484017

ABSTRACT

Rational modulation of the immune response with biologics represents one of the most promising and active areas for the realization of new therapeutic strategies. In particular, the use of function blocking monoclonal antibodies targeting checkpoint inhibitors such as CTLA-4 and PD-1 have proven to be highly effective for the systemic activation of the human immune system to treat a wide range of cancers. Ipilimumab is a fully human antibody targeting CTLA-4 that received FDA approval for the treatment of metastatic melanoma in 2011. Ipilimumab is the first-in-class immunotherapeutic for blockade of CTLA-4 and significantly benefits overall survival of patients with metastatic melanoma. Understanding the chemical and physical determinants recognized by these mAbs provides direct insight into the mechanisms of pathway blockade, the organization of the antigen-antibody complexes at the cell surface, and opportunities to further engineer affinity and selectivity. Here, we report the 3.0 Å resolution X-ray crystal structure of the complex formed by ipilimumab with its human CTLA-4 target. This structure reveals that ipilimumab contacts the front ß-sheet of CTLA-4 and intersects with the CTLA-4:Β7 recognition surface, indicating that direct steric overlap between ipilimumab and the B7 ligands is a major mechanistic contributor to ipilimumab function. The crystallographically observed binding interface was confirmed by a comprehensive cell-based binding assay against a library of CTLA-4 mutants and by direct biochemical approaches. This structure also highlights determinants responsible for the selectivity exhibited by ipilimumab toward CTLA-4 relative to the homologous and functionally related CD28.


Subject(s)
Antigen-Antibody Complex/metabolism , Antineoplastic Agents, Immunological/pharmacology , Binding Sites, Antibody/immunology , CTLA-4 Antigen/antagonists & inhibitors , Ipilimumab/pharmacology , Melanoma/drug therapy , Biological Factors/pharmacology , CTLA-4 Antigen/immunology , Cell Line , Crystallography, X-Ray , HEK293 Cells , Humans , Immunotherapy/methods , Protein Binding , Protein Structure, Tertiary
13.
Bioanalysis ; 8(13): 1383-401, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27277879

ABSTRACT

BACKGROUND: Antibody-drug conjugates (ADCs) are complex drug constructs with multiple species in the heterogeneous mixture that contribute to their efficacy and toxicity. The bioanalysis of ADCs involves multiple assays and analytical platforms. METHODS: A series of ligand binding and LC-MS/MS (LB-LC-MS/MS) hybrid assays, through different combinations of anti-idiotype (anti-Id), anti-payload, or generic capture reagents, and cathepsin-B or trypsin enzyme digestion, were developed and evaluated for the analysis of conjugated-payload as well as for species traditionally measured by ligand-binding assays, total-antibody and conjugated-antibody. RESULTS & CONCLUSION: Hybrid assays are complementary or viable alternatives to ligand-binding assay for ADC bioanalysis and PK/PD modeling. The fit-for-purpose choice of analytes, assays and platforms and an integrated strategy from Discovery to Development for ADC PK and bioanalysis are recommended.


Subject(s)
Immunoconjugates/blood , Pharmaceutical Preparations/blood , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Haplorhini , Humans , Immunoassay/methods , Immunoconjugates/analysis , Limit of Detection , Pharmaceutical Preparations/analysis , Rats
14.
Bioanalysis ; 8(6): 519-31, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26915587

ABSTRACT

BACKGROUND: The bioanalytical strategy for antibody-drug conjugates (ADC) includes multiple integrated measurements of pharmacologically relevant ADC. METHODS & RESULTS: Three ligand-binding assays were validated for the measurement of total antibody, active ADC and total ADC. Accuracy and precision demonstrate %bias from -8 to 14%, %CV from 3 to 11% and total error from 3 to 21%, with >98% samples meeting incurred sample reanalysis criteria. Each assay met stability, selectivity, dilutional integrity, carry over and specificity criteria with no interference from associated metabolite/impurity. Given the active ADC assay sensitivity to payload, active ADC was used to assess drug to antibody ratio. DISCUSSION & CONCLUSION: Implementation of a microfluidic automated platform enabled high throughput sample analysis of multiple analytes with minimal sample processing.


Subject(s)
Immunoassay , Immunoconjugates/analysis , Antibodies, Monoclonal/chemistry , Half-Life , Immunoassay/standards , Immunoconjugates/pharmacokinetics , Lignans , Pharmaceutical Preparations/chemistry , Quality Control
15.
Biopharm Drug Dispos ; 37(2): 93-106, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25869904

ABSTRACT

CD70 is a tumor necrosis factor (TNF)-like type II integral membrane protein that is transiently expressed on activated T- and B-lymphocytes. Aberrant expression of CD70 was identified in both solid tumors and haematologic malignancies. BMS-936561 (αCD70_MED-A) is an antibody-drug conjugate composed of a fully human anti-CD70 monoclonal antibody (αCD70) conjugated with a duocarmycin derivative, MED-A, through a maleimide-containing citrulline-valine dipeptide linker. MED-A is a carbamate prodrug that is activated by carboxylesterase to its active form, MED-B, to exert its DNA alkylation activity. In vitro serum stability studies suggested the efficiencies of hydrolyzing the carbamate-protecting group in αCD70_MED-A followed a rank order of mouse>rat > >monkey>dog~human. Pharmacokinetics of αCD70_MED-A was evaluated in mice, monkeys, and dogs after single intravenous doses. In mice, αCD70_MED-A was cleared rapidly, with no detectable exposures after 15 min following dosing. In contrast, αCD70_MED-A was much more stable in monkeys and dogs. The clearance of αCD70_MED-A in monkeys was 58 mL/d/kg, ~2-fold faster than that in dogs (31 mL/d/kg). The human PK profiles of the total αCD70 and αCD70_MED-A were predicted using allometrically scaled monkeys PK parameters of αCD70 and the carbamate hydrolysis rate constant estimated in dogs. Comparing the predicted and observed human PK from the phase I study, the dose-normalized concentration-time profiles of αCD70_MED-A and the total αCD70 were largely within the 5(th)-95(th) percentile of the predicted profiles.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents, Alkylating/pharmacokinetics , CD27 Ligand/antagonists & inhibitors , Immunoconjugates/pharmacokinetics , Indoles/pharmacokinetics , Prodrugs/pharmacokinetics , Animals , Antibodies, Monoclonal/blood , Antineoplastic Agents, Alkylating/blood , CD27 Ligand/immunology , Dogs , Humans , Immunoconjugates/blood , Indoles/blood , Macaca fascicularis , Mice, Inbred BALB C , Models, Biological
16.
Article in English | MEDLINE | ID: mdl-26310897

ABSTRACT

Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys.


Subject(s)
Chromatography, Liquid/methods , Haplorhini/blood , Immunoconjugates/blood , Tandem Mass Spectrometry/methods , Animals
17.
J Am Soc Mass Spectrom ; 26(10): 1791-4, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26122520

ABSTRACT

Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.


Subject(s)
Immunoconjugates/analysis , Immunoconjugates/chemistry , Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry
19.
Bioanalysis ; 7(13): 1569-82, 2015.
Article in English | MEDLINE | ID: mdl-26226308

ABSTRACT

BACKGROUND: The bioanalytical strategy for antibody-drug conjugates (ADC) includes numerous measurements integrally designed to provide comprehensive characterization of PK, PD and immunogenicity. This manuscript describes the utilization of reagents specifically tailored to an ADC with a microtubule polymerization inhibitor payload and cathepsin B cleavable linker. METHODS: The PK strategy includes the evaluation of physiological levels of total antibody, active ADC, total ADC, antibody-conjugated payload and unconjugated payload. These data are evaluated in the context of target and antidrug antibody levels to elucidate bioactive ADC. RESULTS & CONCLUSION: Herein, we discuss how this strategy has been applied and present our preliminary observations. Continuously evolving to meet pipeline demands, the integrated bioanalytical data will provide critical insights into the exposure-response relationship.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoconjugates/immunology , Antibodies, Monoclonal/chemistry , Humans , Immunoconjugates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...