Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
J Am Chem Soc ; 133(47): 19178-88, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-21999289

ABSTRACT

Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.


Subject(s)
Acrylamides/chemistry , Biomarkers, Tumor/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Acrylamides/chemical synthesis , Biomarkers, Tumor/blood , Coloring Agents/chemistry , Growth Hormone/urine , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Molecular Structure , Particle Size , Peptides/chemistry , Polymers/chemical synthesis , Porosity , Proteins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL