Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e27295, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486744

ABSTRACT

Introduction: Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods: Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results: Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion: Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.

2.
Hum Brain Mapp ; 42(11): 3620-3642, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33978276

ABSTRACT

The hippocampus is necessary for declarative (relational) memory, and the ability to form hippocampal-dependent memories develops through late adolescence. This developmental trajectory of hippocampal-dependent memory could reflect maturation of intrinsic functional brain networks, but resting-state functional connectivity (rs-FC) of the human hippocampus is not well-characterized for periadolescent children. Measuring hippocampal rs-FC in periadolescence would thus fill a gap, and testing covariance of hippocampal rs-FC with age and memory could inform theories of cognitive development. Here, we studied hippocampal rs-FC in a cross-sectional sample of healthy children (N = 96; 59 F; age 9-15 years) using a seed-based approach, and linked these data with NIH Toolbox measures, the Picture-Sequence Memory Test (PSMT) and the List Sorting Working Memory Test (LSWMT). The PSMT was expected to rely more on hippocampal-dependent memory than the LSWMT. We observed hippocampal rs-FC with an extensive brain network including temporal, parietal, and frontal regions. This pattern was consistent with prior work measuring hippocampal rs-FC in younger and older samples. We also observed novel, regionally specific variation in hippocampal rs-FC with age and hippocampal-dependent memory but not working memory. Evidence consistent with these findings was observed in a second, validation dataset of similar-age healthy children drawn from the Philadelphia Neurodevelopment Cohort. Further, a cross-dataset analysis suggested generalizable properties of hippocampal rs-FC and covariance with age and memory. Our findings connect prior work by describing hippocampal rs-FC and covariance with age and memory in typically developing periadolescent children, and our observations suggest a developmental trajectory for brain networks that support hippocampal-dependent memory.


Subject(s)
Adolescent Development/physiology , Cerebral Cortex/physiology , Child Development/physiology , Connectome , Hippocampus/physiology , Memory/physiology , Nerve Net/physiology , Adolescent , Age Factors , Cerebral Cortex/diagnostic imaging , Child , Cross-Sectional Studies , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging
3.
Sci Rep ; 10(1): 10321, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587263

ABSTRACT

Infantile-onset Pompe Disease (IOPD), caused by mutations in lysosomal acid alpha-glucosidase (Gaa), manifests rapidly progressive fatal cardiac and skeletal myopathy incompletely attenuated by synthetic GAA intravenous infusions. The currently available murine model does not fully simulate human IOPD, displaying skeletal myopathy with late-onset hypertrophic cardiomyopathy. Bearing a Cre-LoxP induced exonic disruption of the murine Gaa gene, this model is also not amenable to genome-editing based therapeutic approaches. We report the early onset of severe hypertrophic cardiomyopathy in a novel murine IOPD model generated utilizing CRISPR-Cas9 homology-directed recombination to harbor the orthologous Gaa mutation c.1826dupA (p.Y609*), which causes human IOPD. We demonstrate the dual sgRNA approach with a single-stranded oligonucleotide donor is highly specific for the Gaac.1826 locus without genomic off-target effects or rearrangements. Cardiac and skeletal muscle were deficient in Gaa mRNA and enzymatic activity and accumulated high levels of glycogen. The mice demonstrated skeletal muscle weakness but did not experience early mortality. Altogether, these results demonstrate that the CRISPR-Cas9 generated Gaac.1826dupA murine model recapitulates hypertrophic cardiomyopathy and skeletal muscle weakness of human IOPD, indicating its utility for evaluation of novel therapeutics.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Glycogen Storage Disease Type II/genetics , Muscle Weakness/genetics , alpha-Glucosidases/genetics , Age of Onset , Animals , CRISPR-Cas Systems/genetics , Cardiomyopathy, Hypertrophic/pathology , Disease Models, Animal , Female , Gene Knock-In Techniques , Glycogen/metabolism , Glycogen Storage Disease Type II/complications , Humans , Infant , Male , Mice , Mice, Transgenic , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Myocardium/pathology , RNA, Guide, Kinetoplastida/genetics , alpha-Glucosidases/metabolism
4.
Bio Protoc ; 9(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31497622

ABSTRACT

Splenectomy in an animal model requires a standardized technique utilizing best practice to avoid variability which can result in adverse impact to the animal resulting in flawed physiologic responses simply due to technique rather than to the studied variables. In the case of the spleen, often investigators are analyzing the animal immune or inflammatory responses. Surgical splenectomy involves many variables from the training and expertise of the surgeon, which directly correlates to surgical technique to the length of operation and ease of the procedure. This operation, in turn, impacts blood loss and insensible fluid losses, sterile technique, unintended trauma to the spleen and surrounding organs, the length of the incision and the duration of the operation with more prolonged exposure to anesthetic agents. All these variables ultimately play a significant role in the experiment since they directly affect the response of the model in terms of inflammation, immune activation, or even suppression. Undesired variables such as these go unnoticed and lead to inaccurate and misleading data.

5.
Mol Ther Methods Clin Dev ; 2: 14068, 2015.
Article in English | MEDLINE | ID: mdl-26052536

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is an inherited α-L-iduronidase (IDUA, I) deficiency in which glycosaminoglycan (GAG) accumulation causes progressive multisystem organ dysfunction, neurological impairment, and death. Current MPS I mouse models, based on a NOD/SCID (NS) background, are short-lived, providing a very narrow window to assess the long-term efficacy of therapeutic interventions. They also develop thymic lymphomas, making the assessment of potential tumorigenicity of human stem cell transplantation problematic. We therefore developed a new MPS I model based on a NOD/SCID/Il2rγ (NSG) background. This model lives longer than 1 year and is tumor-free during that time. NSG MPS I (NSGI) mice exhibit the typical phenotypic features of MPS I including coarsened fur and facial features, reduced/abnormal gait, kyphosis, and corneal clouding. IDUA is undetectable in all tissues examined while GAG levels are dramatically higher in most tissues. NSGI brain shows a significant inflammatory response and prominent gliosis. Neurological MPS I manifestations are evidenced by impaired performance in behavioral tests. Human neural and hematopoietic stem cells were found to readily engraft, with human cells detectable for at least 1 year posttransplantation. This new MPS I model is thus suitable for preclinical testing of novel pluripotent stem cell-based therapy approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...