Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 979735, 2022.
Article in English | MEDLINE | ID: mdl-36212152

ABSTRACT

Melanoma is one of the most aggressive tumors, and its lethality is associated with the ability of malignant cells to migrate and invade surrounding tissues to colonize distant organs and to generate widespread metastasis. The serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2) are classically related to the control of pre-mRNA splicing through SR protein phosphorylation and have been found overexpressed in many types of cancer, including melanoma. Previously, we have demonstrated that the pharmacological inhibition of SRPKs impairs pulmonary colonization of metastatic melanoma in mice. As the used compounds could target at least both SRPK1 and SRPK2, here we sought to obtain additional clues regarding the involvement of these paralogs in melanoma progression. We analyzed single-cell RNA sequencing data of melanoma patient cohorts and found that SRPK2 expression in melanoma cells is associated with poor prognosis. Consistently, CRISPR-Cas9 genome targeting of SRPK2, but not SRPK1, impaired actin polymerization dynamics as well as the proliferative and invasive capacity of B16F10 cells in vitro. In further in vivo experiments, genetic targeting of SRPK2, but not SRPK1, reduced tumor progression in both subcutaneous and caudal vein melanoma induction models. Taken together, these findings suggest different functional roles for SRPK1/2 in metastatic melanoma and highlight the relevance of pursuing selective pharmacological inhibitors of SRPK2.

2.
Eur J Med Chem ; 183: 111688, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31542714

ABSTRACT

Leishmania braziliensis is one of the pathogenic agents of cutaneous and mucocutanoeous leishmaniasis. There are no validated vaccines to prevent the infection and the treatment relies on drugs that often present severe side effects, which justify the efforts to find new potential antileishmanial drugs. An alternative to promote the discovery of new drugs would be the association of different chemical groups of bioactive compounds. Here we describe the synthesis and bioactivity evaluation against L. braziliensis of cinnamic acid derivatives possessing isobenzofuranone and 1,2,3-triazole functionalities. We tested 25 compounds at 10 µM concentration against extracellular promastigotes and intracellular amastigotes during macrophage infection. Most compounds were more active against amastigotes than to promastigotes. The derivatives (E)-3-oxo-1,3-dihydroisobenzofuran-5-yl-(3,4,5-trimethoxy) cinnamate (5c), (1-(3,4-difluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9g), and (1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl cinnamate (9l) were the most effective presenting over 80% toxicity on L. braziliensis amastigotes. While compound 5c is a cinnamate with an isobenzofuranone portion, 9g and 9l are triazolic cinnamic acid derivatives. The action of these compounds was comparable to amphotericin B used as positive control. Ultrastructural analysis revealed that 5c-treated parasites showed impaired cytokinesis and apoptosis triggering. Taken together, these results highlight the potential of cinnamic acid derivatives in development of novel anti-leishmanial drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cinnamates/pharmacology , Leishmania braziliensis/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cinnamates/chemical synthesis , Cinnamates/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
3.
Microbes Infect ; 10(8): 850-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18656412

ABSTRACT

Leishmaniasis is a parasitic disease with a variety of clinical forms, which are related to the Leishmania species involved. In the murine model, Leishmania amazonensis causes chronic non-healing lesions in Leishmania braziliensis- or Leishmania major-resistant mouse strains. In this study, we investigated the involvement of the pathway of extracellular nucleotide hydrolysis, with special focus on the role of extracellular adenosine, in the establishment of Leishmania infection. Our results show that the more virulent parasite--L. amazonensis--hydrolyzes higher amounts of ATP, ADP and AMP than the two other species, probably due to the higher expression of membrane NTPDase. Corroborating the idea that increased production of adenosine is important to lesion development and establishment of tissue parasitism, we observed that increased 5'-nucleotidase activity in L. braziliensis or addition of adenosine at the moment of infection with this parasite resulted in an increase in lesion size and parasitism as well as a delay in lesion healing. Furthermore, inhibition of adenosine receptor A2B led to decreased lesion size and parasitism. Thus, our results suggest that the conversion of ATP, a molecule with pro-inflammatory activity, into adenosine, which possesses immunomodulatory properties, may contribute to the establishment of infection by Leishmania.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Leishmania/metabolism , Leishmania/pathogenicity , Adenosine A2 Receptor Antagonists , Animals , Cell Count , Female , Mice , Mice, Inbred C57BL , Skin/parasitology , Skin/pathology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...