Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Bioorg Med Chem Lett ; 48: 128273, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34298132

ABSTRACT

The enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF. The L-isomer possessed the highest potency, binding BpIspF with a KD of 36 µM and inhibited BpIspF activity 55% at 120 µM. The high-resolution crystal structure of the L-tryptophan hydroxamate (3)/BpIspF complex revealed a non-traditional mode of hydroxamate binding where the ligand interacts with the active site zinc ion through the primary amine. In addition, two hydrogen bonds are formed with active site groups, and the indole group is buried within the hydrophobic pocket composed of side chains from the 60 s/70 s loop. Along with the co-crystal structure, STD NMR studies suggest the methylene group and indole ring are potential positions for optimization to enhance binding potency.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Burkholderia pseudomallei/enzymology , Enzyme Inhibitors/pharmacology , Tryptophan/analogs & derivatives , Bacterial Proteins/metabolism , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tryptophan/chemical synthesis , Tryptophan/chemistry , Tryptophan/pharmacology
3.
New Phytol ; 226(3): 760-769, 2020 05.
Article in English | MEDLINE | ID: mdl-31900931

ABSTRACT

Xylem anatomy and function have large implications for plant growth as well as survival during drought, but the impact of nutrient limitation on xylem is not fully understood. This study examines the pygmy forest in California, a plant community that experiences negligible water stress but is severely stunted by low-nutrient and acidic soil, to investigate how nutrient limitation affects xylem function. Thirteen key anatomical and hydraulic traits of stems of four species were compared between pygmy forest plants and nearby conspecifics growing on richer soil. Resistance to cavitation (P50 ), a critical trait for predicting survival during drought, had highly species-specific responses: in one species, pygmy plants had a 26% decrease in cavitation resistance compared to higher-nutrient conspecifics, while in another species, pygmy plants had a 56% increase in cavitation resistance. Other traits responded to nutrient limitation more consistently: pygmy plants had smaller xylem conduits and higher leaf-specific conductivity (KL ) than conspecific controls. Edaphic stress, even in the absence of water stress, altered xylem structure and thus had substantial impacts on water transport. Importantly, nutrient limitation shifted cavitation resistance in a species-specific and unpredictable manner; this finding has implications for the assessment of cavitation resistance in other natural systems.


Subject(s)
Trees , Xylem , California , Forests , Nutrients , Plant Leaves , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...