Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226620

ABSTRACT

The combination of targeted therapy with immune checkpoint inhibition (ICI) is an area of intense interest. We studied the interaction of fibroblast growth factor receptor (FGFR) inhibition with ICI in urothelial carcinoma (UC) of the bladder, in which FGFR3 is altered in 50% of cases. Using an FGFR3-driven, Trp53-mutant genetically engineered murine model (UPFL), we demonstrate that UPFL tumors recapitulate the histology and molecular subtype of their FGFR3-altered human counterparts. Additionally, UPFL1 allografts exhibit hyperprogression to ICI associated with an expansion of T regulatory cells (Tregs). Erdafitinib blocked Treg proliferation in vitro, while in vivo ICI-induced Treg expansion was fully abrogated by FGFR inhibition. Combined erdafitinib and ICI resulted in high therapeutic efficacy. In aggregate, our work establishes that, in mice, co-alteration of FGFR3 and Trp53 results in high-grade, non-muscle-invasive UC and presents a previously underappreciated role for FGFR inhibition in blocking ICI-induced Treg expansion.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Humans , Mice , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Immunosuppression Therapy , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
2.
Cancer Res ; 83(24): 4095-4111, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37729426

ABSTRACT

Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE: Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation
3.
Mol Cancer Ther ; 22(10): 1166-1181, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37486978

ABSTRACT

Prostate cancers adapt to androgen receptor (AR) pathway inhibitors and progress to castration resistance due to ongoing AR expression and function. To counter this, we developed a new approach to modulate the AR and inhibit castration-resistant prostate cancer (CRPC) using multivalent peptoid conjugates (MPC) that contain multiple copies of the AR-targeting ligand ethisterone attached to a peptidomimetic scaffold. Here, we investigated the antitumor effects of compound MPC309, a trivalent display of ethisterone conjugated to a peptoid oligomer backbone that binds to the AR with nanomolar affinity. MPC309 exhibited potent antiproliferative effects on various enzalutamide-resistant prostate cancer models, including those with AR splice variants, ligand-binding mutations, and noncanonical AR gene expression programs, as well as mouse prostate organoids harboring defined genetic alterations that mimic lethal human prostate cancer subtypes. MPC309 is taken up by cells through macropinocytosis, an endocytic process more prevalent in cancer cells than in normal ones, thus providing an opportunity to target tumors selectively. MPC309 triggers a distinct AR transcriptome compared with DHT and enzalutamide, a clinically used antiandrogen. Specifically, MPC309 enhances the expression of differentiation genes while reducing the expression of genes needed for cell division and metabolism. Mechanistically, MPC309 increases AR chromatin occupancy and alters AR interactions with coregulatory proteins in a pattern distinct from DHT. In xenograft studies, MPC309 produced significantly greater tumor suppression than enzalutamide. Altogether, MPC309 represents a promising new AR modulator that can combat resistant disease by promoting an AR antiproliferative gene expression program.


Subject(s)
Peptoids , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Animals , Mice , Humans , Receptors, Androgen/metabolism , Peptoids/pharmacology , Ligands , Ethisterone/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms/pathology , Nitriles/pharmacology , Androgen Receptor Antagonists/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
4.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131623

ABSTRACT

LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE: Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.

6.
Neurol Sci ; 44(2): 437-446, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36289117

ABSTRACT

OBJECTIVE: To estimate the incidence and describe clinical characteristics and outcome of GBS in COVID-19 patients (COVID19-GBS) in one of the most hit regions during the first pandemic wave, Lombardia. METHODS: Adult patients admitted to 20 Neurological Units between 1/3-30/4/2020 with COVID19-GBS were included as part of a multi-center study organized by the Italian society of Hospital Neuroscience (SNO). RESULTS: Thirty-eight COVID19-GBS patients had a mean age of 60.7 years and male frequency of 86.8%. CSF albuminocytological dissociation was detected in 71.4%, and PCR for SARS-CoV-2 was negative in 19 tested patients. Based on neurophysiology, 81.8% of patients had a diagnosis of AIDP, 12.1% of AMSAN, and 6.1% of AMAN. The course was favorable in 76.3% of patients, stable in 10.5%, while 13.2% worsened, of which 3 died. The estimated occurrence rate in Lombardia ranges from 0.5 to 0.05 GBS cases per 1000 COVID-19 infections depending on whether you consider positive cases or estimated seropositive cases. When we compared GBS cases with the pre-pandemic period, we found a reduction of cases from 165 to 135 cases in the 2-month study period in Lombardia. CONCLUSIONS: We detected an increased incidence of GBS in COVID-19 patients which can reflect a higher risk of GBS in COVID-19 patients and a reduction of GBS events during the pandemic period possibly due to a lower spread of more common respiratory infectious diseases determined by an increased use of preventive measures.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Adult , Humans , Male , Middle Aged , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Guillain-Barre Syndrome/diagnosis , Pandemics , Italy/epidemiology
7.
Cancer Immunol Res ; 9(11): 1298-1315, 2021 11.
Article in English | MEDLINE | ID: mdl-34462284

ABSTRACT

Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/genetics , Repressor Proteins/metabolism , Animals , Cell Culture Techniques , Cell Line , Cell Proliferation , Humans , Mice , Mice, Nude
8.
J Stroke Cerebrovasc Dis ; 30(9): 105944, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34271279

ABSTRACT

Ten days after SARS-Cov2 reinfection with mild gastrointestinal symptoms and headache that occurred 2 months after an initial infection, a previously healthy 37-year-old woman developed fluctuating facial and upper limb paresthesia and weakness. Diffusion-weighted magnetic resonance imaging revealed ischemic lesions in the right parietal region of different stages within the same vascular territory. A cerebral angiography demonstrated an isolated focal arteriopathy with no other arterial involvement. Focal cerebral arteriopathy is exceedingly rare among adults and most commonly triggered by varicella-zoster virus reactivation. We present a case of focal cerebral arteriopathy in a patient with a recent reinfection with SARS-CoV-2.


Subject(s)
COVID-19/complications , Cerebral Arterial Diseases/etiology , Ischemic Stroke/etiology , Reinfection , Adult , COVID-19/diagnosis , COVID-19/virology , Cerebral Angiography , Cerebral Arterial Diseases/diagnostic imaging , Cerebral Arterial Diseases/drug therapy , Diffusion Magnetic Resonance Imaging , Dual Anti-Platelet Therapy , Female , Humans , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/drug therapy , Magnetic Resonance Angiography , Platelet Aggregation Inhibitors/administration & dosage , Tomography, X-Ray Computed , Treatment Outcome
9.
Cancer Res ; 80(17): 3556-3567, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32646968

ABSTRACT

Despite advancements in treatment options, the overall cure and survival rates for non-small cell lung cancers (NSCLC) remain low. While small-molecule inhibitors of epigenetic regulators have recently emerged as promising cancer therapeutics, their application in patients with NSCLC is limited. To exploit epigenetic regulators as novel therapeutic targets in NSCLC, we performed pooled epigenome-wide CRISPR knockout screens in vitro and in vivo and identified the histone chaperone nucleophosmin 1 (Npm1) as a potential therapeutic target. Genetic ablation of Npm1 significantly attenuated tumor progression in vitro and in vivo. Furthermore, KRAS-mutant cancer cells were more addicted to NPM1 expression. Genetic ablation of Npm1 rewired the balance of metabolism in cancer cells from predominant aerobic glycolysis to oxidative phosphorylation and reduced the population of tumor-propagating cells. Overall, our results support NPM1 as a therapeutic vulnerability in NSCLC. SIGNIFICANCE: Epigenome-wide CRISPR knockout screens identify NPM1 as a novel metabolic vulnerability and demonstrate that targeting NPM1 is a new therapeutic opportunity for patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Genetic Techniques , Lung Neoplasms , Nuclear Proteins/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , Epigenesis, Genetic , Heterografts , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Nuclear Proteins/genetics , Nucleophosmin
10.
Cancer Cell ; 37(1): 37-54.e9, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31883968

ABSTRACT

Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Genomic Instability , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Animals , Antineoplastic Agents/pharmacology , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Chemokine CXCL9/metabolism , DNA Damage , Female , Humans , Immune System , Inflammation , Interferon-gamma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Male , Mice , Micronucleus Tests , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrroles/pharmacology , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Tumor Necrosis Factor-alpha/metabolism , Cyclin-Dependent Kinase-Activating Kinase
11.
Cancer Discov ; 10(2): 270-287, 2020 02.
Article in English | MEDLINE | ID: mdl-31744829

ABSTRACT

Despite substantial progress in lung cancer immunotherapy, the overall response rate in patients with KRAS-mutant lung adenocarcinoma (LUAD) remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of antitumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused single guide RNA library and performed an in vivo CRISPR screen in a Kras G12D/Trp53 -/- LUAD model. Our data showed that loss of the histone chaperone Asf1a in tumor cells sensitizes tumors to anti-PD-1 treatment. Mechanistic studies revealed that tumor cell-intrinsic Asf1a deficiency induced immunogenic macrophage differentiation in the tumor microenvironment by upregulating GM-CSF expression and potentiated T-cell activation in combination with anti-PD-1. Our results provide a rationale for a novel combination therapy consisting of ASF1A inhibition and anti-PD-1 immunotherapy. SIGNIFICANCE: Using an in vivo epigenetic CRISPR screen, we identified Asf1a as a critical regulator of LUAD sensitivity to anti-PD-1 therapy. Asf1a deficiency synergized with anti-PD-1 immunotherapy by promoting M1-like macrophage polarization and T-cell activation. Thus, we provide a new immunotherapeutic strategy for this subtype of patients with LUAD.See related commentary by Menzel and Black, p. 179.This article is highlighted in the In This Issue feature, p. 161.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Cell Cycle Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Molecular Chaperones/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Animals , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Disease Models, Animal , Epigenesis, Genetic/immunology , Gene Expression Regulation, Neoplastic/immunology , Gene Knockout Techniques , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Molecular Chaperones/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Small Interfering/metabolism , RNA-Seq , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Tumor Suppressor Protein p53/genetics
12.
Cochrane Database Syst Rev ; 5: CD007231, 2019 05 05.
Article in English | MEDLINE | ID: mdl-31055832

ABSTRACT

BACKGROUND: Stroke is a leading cause of morbidity and mortality worldwide, with very large healthcare and social costs, and a strong demand for alternative therapeutic approaches. Preclinical studies have shown that stem cells transplanted into the brain can lead to functional improvement. However, to date, evidence for the benefits of stem cell transplantation in people with ischemic stroke is lacking. This is the first update of the Cochrane review published in 2010. OBJECTIVES: To assess the efficacy and safety of stem cell transplantation compared with control in people with ischemic stroke. SEARCH METHODS: We searched the Cochrane Stroke Group Trials Register (last searched August 2018), CENTRAL (last searched August 2018), MEDLINE (1966 to August 2018), Embase (1980 to August 2018), and BIOSIS (1926 to August 2018). We handsearched potentially relevant conference proceedings, screened reference lists, and searched ongoing trials and research registers (last searched August 2018). We also contacted individuals active in the field and stem cell manufacturers (last contacted August 2018). SELECTION CRITERIA: We included randomized controlled trials (RCTs) that recruited people with ischemic stroke, in any phase of the disease (acute, subacute or chronic), and an ischemic lesion confirmed by computerized tomography or magnetic resonance imaging scan. We included all types of stem cell transplantation, regardless of cell source (autograft, allograft, or xenograft; embryonic, fetal, or adult; from brain or other tissues), route of cell administration (systemic or local), and dosage. The primary outcome was efficacy (assessed as neurologic impairment or functional outcome) at longer term follow-up (minimum six months). Secondary outcomes included post-procedure safety outcomes (death, worsening of neurological deficit, infections, and neoplastic transformation). DATA COLLECTION AND ANALYSIS: Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. If needed, we contacted study authors for additional information. We performed random effects meta-analyses when two or more RCTs were available for any outcome. We assessed the certainty of the evidence by using the GRADE approach. MAIN RESULTS: In this updated review, we included seven completed RCTs with 401 participants. All tested adult human non-neural stem cells; cells were transplanted during the acute, subacute, or chronic phase of ischemic stroke; administered intravenously, intra-arterially, intracerebrally, or into the lumbar subarachnoid space. Follow-up ranged from six months to seven years. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), or Barthel Index (BI). Safety outcomes included case fatality, and were measured at the end of the trial.Overall, stem cell transplantation was associated with a better clinical outcome when measured with the NIHSS (mean difference [MD] -1.49, 95% confidence interval [CI] -2.65 to -0.33; five studies, 319 participants; low-certainty evidence), but not with the mRS (MD -0.42, 95% CI -0.86 to 0.02; six studies, 371 participants; very low-certainty evidence), or the BI (MD 14.09, 95% CI -1.94 to 30.13; three studies, 170 participants; very low-certainty evidence). The studies in favor of stem cell transplantation had, on average, a higher risk of bias, and a sample size of 32 or fewer participants.No significant safety concerns associated with stem cell transplantation were raised with respect to death (risk ratio [RR] 0.66, 95% CI 0.39 to 1.14; six studies, participants; low-certainty evidence).We were not able to perform the sensitivity analysis according to the quality of studies, because all of them were at high risk of bias. AUTHORS' CONCLUSIONS: Overall, in participants with ischemic stroke, stem cell transplantation was associated with a reduced neurological impairment, but not with a better functional outcome. No obvious safety concerns were raised. However, these conclusions came mostly from small RCTs with high risk of bias, and the certainty of the evidence ranged from low to very low. More well-designed trials are needed.


Subject(s)
Brain Ischemia/therapy , Stem Cell Transplantation , Humans , Randomized Controlled Trials as Topic , Stem Cell Transplantation/methods , Stroke
13.
Biomolecules ; 9(3)2019 03 04.
Article in English | MEDLINE | ID: mdl-30836703

ABSTRACT

The CDKN2a/ARF locus expresses two partially overlapping transcripts that encode two distinct proteins, namely p14ARF (p19Arf in mouse) and p16INK4a, which present no sequence identity. Initial data obtained in mice showed that both proteins are potent tumor suppressors. In line with a tumor-suppressive role, ARF-deficient mice develop lymphomas, sarcomas, and adenocarcinomas, with a median survival rate of one year of age. In humans, the importance of ARF inactivation in cancer is less clear whereas a more obvious role has been documented for p16INK4a. Indeed, many alterations in human tumors result in the elimination of the entire locus, while the majority of point mutations affect p16INK4a. Nevertheless, specific mutations of p14ARF have been described in different types of human cancers such as colorectal and gastric carcinomas, melanoma and glioblastoma. The activity of the tumor suppressor ARF has been shown to rely on both p53-dependent and independent functions. However, novel data collected in the last years has challenged the traditional and established role of this protein as a tumor suppressor. In particular, tumors retaining ARF expression evolve to metastatic and invasive phenotypes and in humans are associated with a poor prognosis. In this review, the recent evidence and the molecular mechanisms of a novel role played by ARF will be presented and discussed, both in pathological and physiological contexts.


Subject(s)
Adenocarcinoma/metabolism , Lymphoma/metabolism , Sarcoma/metabolism , Tumor Suppressor Protein p14ARF/chemistry , Tumor Suppressor Protein p14ARF/metabolism , Adenocarcinoma/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Lymphoma/genetics , Mice , Mice, Knockout , Sarcoma/genetics , Tumor Suppressor Protein p14ARF/deficiency , Tumor Suppressor Protein p14ARF/genetics
14.
Endocr Relat Cancer ; 26(4): 425-436, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30699064

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer. Despite its low incidence, it accounts for a disproportionate number of thyroid cancer-related deaths, because of its resistance to current therapeutic approaches. Novel actionable targets are urgently needed to prolong patient survival and increase their quality of life. Loss and mutation of the RB1 tumor suppressor are rare events in ATC, which suggests that therapies directed at inhibiting the cyclin D/CDK4 complexes, responsible for RB phosphorylation and inactivation, might be effective in this tumor type. In fact, we found that the CDK4/6 inhibitor, palbociclib, strongly inhibits proliferation in all the RB1 wild type ATC cell lines tested. Efficacy was also observed in vivo, in a xenograft model. However, ATC cells rapidly developed resistance to palbociclib. Resistance was associated with increased levels of cyclin D1 and D3. To counter cyclin D overexpression, we tested the effect of combining palbociclib with the PI3K/mTOR dual inhibitor, omipalisib. Combined treatment synergistically reduced cell proliferation, even in cell lines that do not carry PI3K-activating mutations. More importantly, low-dose combination was dramatically effective in inhibiting tumor growth in a xenograft model. Thus, combined PI3K/mTOR and CDK4/6 inhibition is a highly promising novel approach for the treatment of aggressive, therapy-resistant thyroid cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Quinolines/therapeutic use , Sulfonamides/therapeutic use , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridazines , Pyridines/pharmacology , Quinolines/pharmacology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/metabolism , Xenograft Model Antitumor Assays
15.
Cancer Lett ; 439: 56-65, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30243708

ABSTRACT

Anaplastic thyroid cancer (ATC) is among the most lethal malignancies. The mitotic kinase PLK1 is overexpressed in the majority of ATCs and PLK1 inhibitors have shown preclinical efficacy. However, they also cause mitotic slippage and endoreduplication, leading to the generation of tetraploid, genetically unstable cell populations. We hypothesized that PI3K activity may facilitate mitotic slippage upon PLK1 inhibition, and thus tested the effect of combining PLK1 and PI3K inhibitors in ATC models, in vitro and in vivo. Treatment with BI6727 and BKM120 resulted in a significant synergistic effect in ATC cells, independent of the levels of AKT activity. Combination of the two drugs enhanced growth suppression at doses for which the single drugs showed no effect, and led to a massive reduction of the tetraploid cells population. Furthermore, combined treatment in PI3Khigh cell lines showed a significant induction of apoptosis. Finally, combined inhibition of PI3K and PLK1 was extremely effective in vivo, in an immunocompetent allograft model of ATC. Our results demonstrate a clear therapeutic potential of combining PLK1 and PI3K inhibitors in anaplastic thyroid tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Endoreduplication/drug effects , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Aminopyridines/administration & dosage , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Endoreduplication/genetics , Humans , Mice , Morpholines/administration & dosage , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/administration & dosage , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Polo-Like Kinase 1
16.
Gene ; 645: 34-40, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29246538

ABSTRACT

ΔNp63α is finely and strictly regulated during embryogenesis and differentiation. ΔNp63α is the only p63 isoform degraded by the proteasome after Ubiquitin and SUMO (Small Ubiquitin-like MOdifier) conjugation. Here, we show that p63 ubiquitylation per se is not the signal triggering p63 proteasomal degradation. Taking advantage of natural ΔNp63α mutants isolated by patients with Split Hand and Foot Malformation IV syndrome, we found that SUMO and Ub modifications are not redundant and both are required to guarantee efficient ΔNp63α degradation. Here, we present evidence that sumoylation and ubiquitylation of ΔNp63α are strongly intertwined, and none of the two can efficiently occur if the other is impaired.


Subject(s)
Transcription Factors/chemistry , Transcription Factors/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Cell Line , HEK293 Cells , Humans , Limb Deformities, Congenital/genetics , Molecular Weight , Mutation , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitination
17.
Cancer Res ; 77(24): 6914-6926, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29055016

ABSTRACT

Activation of the PI3K-AKT signaling cascade is a common critical event during malignant transformation. In this study, we used thyroid gland epithelial cells and a series of genetically engineered mouse strains as model systems to demonstrate that, although necessary, AKT activation is not sufficient for PI3K-driven transformation. Instead, transformation requires the activity of the PDK1-regulated AGC family of protein kinases. In particular, SGK1 was found to be essential for proliferation and survival of thyroid cancer cells harboring PI3K-activating mutations. Notably, cotargeting SGK1 and AKT resulted in significantly higher growth suppression than inhibiting either PI3K or AKT alone. Overall, these findings underscore the clinical relevance of AKT-independent pathways in tumors driven by genetic lesions targeting the PI3K cascade. Cancer Res; 77(24); 6914-26. ©2017 AACR.


Subject(s)
Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Immediate-Early Proteins/physiology , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Animals , Cell Line, Tumor , Cell Survival/genetics , Cell Transformation, Neoplastic/metabolism , HEK293 Cells , Humans , Mice , Mice, Transgenic , Signal Transduction/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
18.
Turk Neurosurg ; 27(5): 832-836, 2017.
Article in English | MEDLINE | ID: mdl-27593848

ABSTRACT

Direct exposure and cannulation of the superior ophthalmic vein (SOV) provides an alternative access to reach the cavernous sinus for carotid-cavernous fistula (CCF) embolization, when classic transvenous routes through the inferior petrosal sinus (IPS) or facial vein are not feasible. We have used indocyanine green (ICG)-videoangiography to study intraoperatively the flow inside the SOV in two cases of indirect CCF. In this paper, we report the operative technique and the result of ICG videoangiographic-guided cannulation of the SOV for endovascular treatment of CCF. Two male patients, of 59 and 66 years of age respectively, presented at our Institution with right decreased visual acuity, persistent binocular diplopia and painful ophthalmoplegia, chemosis and proptosis, due to right unilateral indirect CCF fistula. The endovascular transvenous approach failed in one case due to thrombosis of the inferior petrosal sinus (IPS) and the extreme tortuosity of the angular vein. In the other case, it was considered unfeasible due to an unfavourable vascular angioarchitecture. For this reason, an ICG videoangiographic-guided cannulation of the SOV, followed by endovascular obliteration of the CCF, was performed. CCF was cured in both cases with this approach. No additional neurological deficits and no complications due to SOV cannulation were registered during the hospital stay. There were no fistula recurrences during the mean follow-up of 18 months. ICG-videoangiography is a simple, fast and cost-effective technique that can be reliably applied in SOV cannulation for subsequent indirect CCF embolization.


Subject(s)
Carotid-Cavernous Sinus Fistula/therapy , Cavernous Sinus/surgery , Embolization, Therapeutic/methods , Aged , Carotid-Cavernous Sinus Fistula/diagnostic imaging , Catheterization/methods , Cavernous Sinus/diagnostic imaging , Humans , Indocyanine Green , Male , Middle Aged , Treatment Outcome
19.
Oncotarget ; 7(23): 34453-71, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27144341

ABSTRACT

Poorly differentiated and anaplastic thyroid carcinomas are very aggressive, almost invariably lethal neoplasms for which no effective treatment exists. These tumors are intrinsically resistant to cell death, even when their driver oncogenic signaling pathways are inhibited.We have undertaken a detailed analysis, in mouse and human thyroid cancer cells, of the mechanism through which Obatoclax, a pan-inhibitor of the anti-apoptotic proteins of the BCL2 family, effectively reduces tumor growth in vitro and in vivo.We demonstrate that Obatoclax does not induce apoptosis, but rather necrosis of thyroid cancer cells, and that non-transformed thyroid cells are significantly less affected by this compound. Surprisingly, we show that Obatoclax rapidly localizes to the lysosomes and induces loss of acidification, block of lysosomal fusion with autophagic vacuoles, and subsequent lysosomal permeabilization. Notably, prior lysosome neutralization using different V-ATPase inhibitors partially protects cancer cells from the toxic effects of Obatoclax. Although inhibition of autophagy does not affect Obatoclax-induced cell death, selective down-regulation of ATG7, but not of ATG5, partially impairs Obatoclax effects, suggesting the existence of autophagy-independent functions for ATG7. Strikingly, Obatoclax killing activity depends only on its accumulation in the lysosomes, and not on its interaction with BCL2 family members.Finally, we show that also other lysosome-targeting compounds, Mefloquine and LLOMe, readily induce necrosis in thyroid cancer cells, and that Mefloquine significantly impairs tumor growth in vivo, highlighting a clear vulnerability of these aggressive, apoptosis-resistant tumors that can be therapeutically exploited.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Lysosomes/metabolism , Necrosis/chemically induced , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrroles/pharmacology , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Autophagy-Related Protein 5/biosynthesis , Autophagy-Related Protein 7/biosynthesis , Cell Proliferation , Humans , Indoles , Mefloquine/pharmacology , Mice , Mice, Knockout , RNA Interference , RNA, Small Interfering , Spheroids, Cellular , Tumor Cells, Cultured
20.
Curr Treat Options Neurol ; 18(7): 33, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27225543

ABSTRACT

OPINION STATEMENT: Fabry disease is an X-linked, lysosomal storage disorder caused by a mutation in the GLA gene leading to a deficiency in alpha-galactosidase A enzyme (α-Gal A) activity, which in turn results in accumulation of globotriaosylceramide in the vascular endothelium and smooth muscle cells of different organs, including kidney and heart, finally leading to impairment or failure of organ function. The central and peripheral nervous systems are also affected leading to neurological manifestations such as cerebrovascular diseases, small fiber neuropathy (SFN), and dysautonomic disorders that may be the presenting clinical features in a proportion of patients. This review offers a complete update of all neurological aspects of Fabry disease and therapeutic options. The rarity of disease, as well as the incomplete knowledge regarding natural history, pathogenic mechanisms, and the uncertain efficacy of available therapies, make imperative the acquisition of standardized data on natural disease course. These data are fundamental for the development of new treatments better able to access the central nervous system, to bypass the neutralizing antibodies and to improve the heart and kidney function.

SELECTION OF CITATIONS
SEARCH DETAIL
...