Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 98: 105231, 2022 03.
Article in English | MEDLINE | ID: mdl-35104681

ABSTRACT

Pseudomonas aeruginosa is a major infectious agent among Gram-negative bacteria, which causes both acute and chronic infections. Infections due to P. aeruginosa are hard to treat, as it entails various strategies like virulence factors synthesis, drug efflux systems & resistance and protein secretion systems during pathogenesis. Despite extensive research in Pseudomonas pathogenesis, novel drug targets and potential therapeutic strategies are urgently needed. In this study, we investigated the genetic requirements of P. aeruginosa PAO1 for rat cardiomyocyte (H9C2) infection by insertion sequencing (INSeq). A mutant library comprising ~70,000 mutants of PAO1 was generated and the differentiated form of H9C2 cells (d-H9C2) was infected with the library. The infected d-H9C2 cells were maintained with antibiotic-protection and without any antibiotics in the growth media for 24 h. Subsequently, DNA library for INSeq was prepared, sequenced and fitness analysis was performed. One hundred and thirteen mutants were negatively selected in the infection condition with antibiotic-protection, whereas 143 mutants were negatively selected in antibiotic-free condition. Surprisingly, a higher number of mutants showed enriched fitness than the mutants of reduced fitness during the infection. We demonstrated that the genes associated with flagella and T3SS are important for adhesion and invasion of cardiomyocytes, while pili and proteases are conditionally essential during host cell lysis. Hence, our findings highlight the essential genes for cardiomyocyte infection, particularly during the intracellular phase. The aerotaxis receptor Aer, plays a critical role during intracellular life. Genes such as flgE, flgF, flhA, flhB, fliA, fliC, fliF, motA, aotJ, aer, wbpJ, ponA, fleQ, PA5205, hmgA, trkH and pslH are essential for infection.


Subject(s)
Myocytes, Cardiac/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Animals , Genome-Wide Association Study , Rats
2.
G3 (Bethesda) ; 9(3): 651-661, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30705119

ABSTRACT

The reciprocal interaction between rhizosphere bacteria and their plant hosts results in a complex battery of genetic and physiological responses. In this study, we used insertion sequencing (INSeq) to reveal the genetic determinants responsible for the fitness of Pseudomonas aeruginosa PGPR2 during root colonization. We generated a random transposon mutant library of Pseudomonas aeruginosa PGPR2 comprising 39,500 unique insertions and identified genes required for growth in culture and on corn roots. A total of 108 genes were identified as contributing to the fitness of strain PGPR2 on roots. The importance in root colonization of four genes identified in the INSeq screen was verified by constructing deletion mutants in the genes and testing them for the ability to colonize corn roots singly or in competition with the wild type. All four mutants were affected in corn root colonization, displaying 5- to 100-fold reductions in populations in single inoculations, and all were outcompeted by the wild type by almost 100-fold after seven days on corn roots in mixed inoculations of the wild type and mutant. The genes identified in the screen had homology to genes involved in amino acid catabolism, stress adaptation, detoxification, signal transduction, and transport. INSeq technology proved a successful tool to identify fitness factors in Paeruginosa PGPR2 for root colonization.


Subject(s)
Genes, Bacterial , Pseudomonas aeruginosa/genetics , Symbiosis , Zea mays/microbiology , Bacterial Proteins/metabolism , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Mutagenesis, Insertional , Plant Roots/microbiology , Plant Roots/physiology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Zea mays/physiology
3.
Front Microbiol ; 9: 411, 2018.
Article in English | MEDLINE | ID: mdl-29568290

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen and one of the leading causes of nosocomial infection worldwide. Probiotic bacteria play a significant role in preventive or therapeutic interventions of gastrointestinal infections in human as well as animals. In this study, we have investigated the adhesion property of the probiotic strain Lactobacillus fermentum MTCC 8711 and its ability to prevent the adhesion of MRSA to human colon adenocarcinoma cells, Caco-2. We have shown that L. fermentum could efficiently adhere to the Caco-2 cells. Also, we have shown that L. fermentum significantly reduced MRSA adhesion to Caco-2 cells. Three types of experiments were performed to assess the anti-adhesion property of L. fermentum against MRSA. Inhibition (Caco-2 cells were pre-treated with L. fermentum, and subsequently MRSA was added), competition (both L. fermentum and MRSA were added to Caco-2 cells simultaneously), and displacement or exclusion (Caco-2 cells were pre-treated with MRSA, and subsequently L. fermentum was added). In all three experiments, adhesion of MRSA was significantly reduced. Interestingly, L. fermentum could efficiently displace the adhered MRSA, and hence this probiotic can be used for therapeutic applications also. In cytotoxicity assay, we found that L. fermentum per se was not cytotoxic, and also significantly reduced the MRSA-induced cytotoxicity. The protective effect occurred without affecting Caco-2 cell morphology and viability.

4.
Mater Sci Eng C Mater Biol Appl ; 82: 182-189, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29025645

ABSTRACT

Curcumin loaded ZnO nanoparticles were successfully synthesised and encapsulated with co-polymer PMMA-AA (Cur/PMMA-AA/ZnO NPs). The ZnO nanoparticles have been converted as good cargo materials to carry the well-known hydrophobic drug curcumin by surface functionalization. Physical characteristics of these novel nanomaterials have been studied with transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) in conjunction with spectral techniques. A narrow particle size distribution with an average value of 42nm was found via TEM. Most importantly, the pH-responsive release of curcumin from the nano-vehicle ensures safer, more controlled delivery of the drug at physiological pH. The drug entrapment efficiency and loading was evaluated and the in vitro efficacy as anticancer drug delivery vehicle was analyzed. The potential toxicity of Cur/PMMA-AA/ZnO NPs was studied by using AGS gastric cancer cell lines via MTT assay. These results revealed that the proposed nanomaterials induce a remarkable cell death in in-vitro models. The multifunctional properties of Cur/PMMA-AA/ZnO NPs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy.


Subject(s)
Antineoplastic Agents/chemistry , Curcumin/chemistry , Nanoparticles/chemistry , Zinc Oxide/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , X-Ray Diffraction
5.
Mater Sci Eng C Mater Biol Appl ; 80: 59-68, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28866205

ABSTRACT

Although curcumin is efficient in killing cancer cells, its poor water solubility and assocaited inadequate bioavailability remain major limitations to its therapeutic application. The formulation of curcumin micellar nanoparticles (NPs) encapsulated with a biodegradable polymer promises to significantly improve curcumin's solubility, stability, and bioavailability. The past decade has witnessed the development of nanoscale curcumin delivery systems: curcumin-loaded liposomes or nanoparticles, self-microemulsifying drug delivery systems (SMEDDS), cyclodextrin inclusions, solid dispersions, nanodisks, and nanotubes. The intention of the present investigation was to enhance the bioavailability and ultimately the efficacy of curcumin by developing a curcumin loaded PMMA-PEG/ZnO bionanocomposite utilizing insoluble curcumin and poorly soluble ZnO nanoparticles. Here, the drug (curcumin) may be carry and deliver the biomolecule(s) by polymer-encapsulated ZnO NPs. Physical characteristics of these novel nanomaterials have been studied with transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) in conjunction with spectral techniques. Aqueous solubility of curcumin was augmented upon conjugation with the polymer-stabilized ZnO NPs. A narrow nanocomposite particle size distribution with an average value of 40 to 90nm was found via TEM. Most importantly, the pH-responsive release of curcumin from the nano-vehicle ensures safer, more controlled delivery of the drug at physiological pH. Cytotoxic potential and cellular uptake of curcumin loaded ZnO NPs were assessed by) cell viability assay, cell cycle assays along with the cell imaging studies have been done in addition to MTT using AGS cancer cells. Hence, these studies demonstrate that the clinical potential of the Curcumin Loaded PMMA-PEG/ZnO can induce the apoptosis of cancer cells through a cell cycle mediated apoptosis corridor, which raises its probability to cure gastric cancer cells.


Subject(s)
Stomach Neoplasms , Apoptosis , Curcumin , Humans , Metal Nanoparticles , Nanocomposites , Particle Size , Polyethylene Glycols , Polymethyl Methacrylate
6.
J Basic Microbiol ; 55(10): 1191-202, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26011149

ABSTRACT

Bacterial infections in myocardium may lead to the myocardial damage, which may progress to dilated cardiomyopathy and cardiac arrest. Pseudomonas aeruginosa has been reported to cause myocarditis and other systemic infections especially in immunocompromised patients. To understand the cellular responses during the establishment of infection in myocardium, we challenged differentiated H9C2 cells with P. aeruginosa PAO1. We also did comparison studies with infected undifferentiated form of H9C2 cells. Invasion studies revealed that PAO1 can invade both forms of cells and is able to survive and replicate within the host. Internalization of PAO1 was confirmed by live cell imaging and flow cytometry analysis. Though invasion of the pathogen triggered an increased ROS production in the host cells at earlier post-infection periods, it was decreased at later post-infection periods. Invasion of PAO1 induced cell death through apoptosis in differentiated H9C2 cells. Significant decrease in cell size, formation of polarized mitochondria, and nuclear fragmentation were observed in the infected differentiated cells. On the contrary, cell death preceded by multinucleation was observed in infected undifferentiated H9C2 cells. Morphological markers such as multinuclei and micro nuclei were observed. Cell cycle arrest in G2/M phase corroborates that the undifferentiated H9C2 cells experienced cell death preceded by multinucleation.


Subject(s)
Arteriosclerosis/etiology , Disease Models, Animal , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...