Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 63(3): 697-708, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16463276

ABSTRACT

The ability to predict and characterize distributions of reactivities over families and even superfamilies of proteins opens the door to an array of analyses regarding functional evolution. In this article, insights into functional evolution in the Kazal inhibitor superfamily are gained by analyzing and comparing predicted association free energy distributions against six serine proteinases, over a number of groups of inhibitors: all possible Kazal inhibitors, natural avian ovomucoid first and third domains, and sets of Kazal inhibitors with statistically weighted combinations of residues. The results indicate that, despite the great hypervariability of residues in the 10 proteinase-binding positions, avian ovomucoid third domains evolved to inhibit enzymes similar to the six enzymes selected, whereas the orthologous first domains are not inhibitors of these enzymes on purpose. Hypervariability arises because of similarity in energetic contribution from multiple residue types; conservation is in terms of functionality, with "good" residues, which make positive or less deleterious contributions to the binding, selected more frequently, and yielding overall the same distributional characteristics. Further analysis of the distributions indicates that while nature did optimize inhibitor strength, the objective may not have been the strongest possible inhibitor against one enzyme but rather an inhibitor that is relatively strong against a number of enzymes.


Subject(s)
Evolution, Molecular , Ovomucin/chemistry , Trypsin Inhibitor, Kazal Pancreatic/chemistry , Amino Acid Sequence , Animals , Molecular Sequence Data , Multigene Family , Ovomucin/genetics , Ovomucin/physiology , Trypsin Inhibitor, Kazal Pancreatic/genetics , Turkeys
2.
Biochemistry ; 42(21): 6460-6, 2003 Jun 03.
Article in English | MEDLINE | ID: mdl-12767228

ABSTRACT

The standard free energies of association (or equilibrium constants) are predicted for 11 multiple variants of the turkey ovomucoid third domain, a member of the Kazal family of protein inhibitors, each interacting with six selected enzymes. The equilibrium constants for 38 of 66 possible interactions are strong enough to measure, and for these, the predicted and measured free energies are compared, thus providing an additional test of the additivity-based sequence to reactivity algorithm. The test appears to be unbiased as the 11 variants were designed a decade ago to study furin inhibition and the specificity of furin differs greatly from the specificities of our six target enzymes. As the contact regions of these inhibitors are highly positive, nonadditivity was expected. Of the 11 variants, one does not satisfy the restriction that either P(2) Thr or P(1)' Glu should be present and all three measurable results on it, as expected, are nonadditive. For the remaining 35 measurements, 22 are additive, 12 are partially additive, and only one is (slightly) nonadditive. These results are comparable to those obtained for a set of 398 equilibrium constants for natural variants of ovomucoid third domains. The expectation that clustering of charges would be nonadditive is modified to the expectation that major nonadditivity will be observed only if the combining sites in both associating proteins involve large charge clusters of the opposite sign. It is also shown here that an analysis of a small variant set can be accomplished with a smaller subset, in this case 13 variants, rather than the whole set of 191 members used for the complete algorithm.


Subject(s)
Algorithms , Biochemistry/methods , Proteins/chemistry , Amino Acid Sequence , Databases as Topic , Escherichia coli/metabolism , Kinetics , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Staphylococcus aureus/enzymology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...