Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(22): 13306-13313, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30354082

ABSTRACT

Biofilm-sediment aggregate (BSA) contains a high water content, either within internal pores and channels or bound by extracellular polymeric substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs alters the biofilm morphology and thus the physical characteristics of porous media, such as the binding matrix within BSA and internal pore geometry. Observing BSAs in their naturally hydrated form is essential but hampered due to the lack of techniques for imaging and discerning hydrated materials. Generally, imagery techniques (scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs (freeze-drying or acetone dehydration) or prevent differentiation between BSA components such as inorganic particles and pore water (confocal laser scanning microscopic (CLSM)). Here, we propose a novel methodology that simultaneously achieves the 3D visualization and quantification of BSAs and their components in their hydrated form at a submicron resolution using X-ray microcomputed tomography (µ-CT). It enables the high-resolution detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix. This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles, contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.


Subject(s)
Imaging, Three-Dimensional , Plastics , Biofilms , Microscopy, Electron, Scanning , X-Ray Microtomography , X-Rays
2.
Clin Orthop Relat Res ; 474(11): 2405-2413, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27020431

ABSTRACT

BACKGROUND: Both the material and geometry of a total knee arthroplasty (TKA) component influence the induced periprosthetic bone strain field. Strain, a measure of the local relative deformation in a structure, corresponds to the mechanical stimulus that governs bone remodeling and is therefore a useful in vitro biomechanical measure for assessing the response of bone to new implant designs and materials. A polyetheretherketone (PEEK) femoral implant has the potential to promote bone strains closer to that of natural bone as a result of its low elastic modulus compared with cobalt-chromium (CoCr). QUESTIONS/PURPOSES: In the present study, we used a Digital Image Correlation (DIC) technique to answer the following question: Does a PEEK TKA femoral component induce a more physiologically normal bone strain distribution than a CoCr component? To achieve this, a DIC test protocol was developed for periprosthetic bone strain assessment using an analog model; the protocol aimed to minimize errors in strain assessment through the selection of appropriate analysis parameters. METHODS: Three synthetic bone femurs were used in this experiment. One was implanted with a CoCr femoral component and one with a PEEK femoral component. The third (unimplanted) femur was intact and used as the physiological reference (control) model. All models were subjected to standing loads on the corresponding polyethylene (ultrahigh-molecular-weight polyethylene) tibial component, and speckle image data were acquired for surface strain analysis using DIC in six repeat tests. The strain in 16 regions of interest on the lateral surface of each of the implanted bone models was plotted for comparison with the corresponding strains in the intact case. A Wilcoxon signed-rank test was used to test for difference at the 5% significance level. RESULTS: Surface analog bone strain after CoCr implantation indicated strain shielding (R2 = 0.6178 with slope, ß = 0.4314) and was lower than the intact case (p = 0.014). The strain after implantation with the PEEK implant deviated less from the intact case (R2 = 0.7972 with slope ß = 0.939) with no difference (p = 0.231). CONCLUSIONS: The strain shielding observed with the contemporary CoCr implant, consistent with clinical bone mineral density change data reported by others, may be reduced by using a PEEK implant. CLINICAL RELEVANCE: This bone analog in vitro study suggests that a PEEK femoral component could transfer more physiologically normal bone strains with a potentially reduced stress shielding effect, which may improve long-term bone preservation. Additional studies including paired cadaver tests are necessary to test the hypothesis further.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Chromium Alloys/chemistry , Femur/surgery , Ketones/chemistry , Knee Joint/surgery , Knee Prosthesis , Polyethylene Glycols/chemistry , Arthroplasty, Replacement, Knee/adverse effects , Benzophenones , Biomechanical Phenomena , Elastic Modulus , Femur/physiopathology , Image Processing, Computer-Assisted , Knee Joint/physiopathology , Materials Testing , Models, Anatomic , Polymers , Prosthesis Design , Prosthesis Failure , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL