Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(2): e28485, 2023 02.
Article in English | MEDLINE | ID: mdl-36625390

ABSTRACT

Rotavirus A (RVA) is a major viral cause of acute gastroenteritis (AGE) worldwide. G12 RVA strains have emerged globally since 2007. There has been no report of the whole genome sequences of G12 RVAs in Indonesia. We performed the complete genome analysis by the next-generation sequencing of five G12 strains from hospitalized children with AGE in Surabaya from 2017 to 2018. All five G12 strains were Wa-like strains (G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1) and were clustered into lineage-III of VP7 gene phylogenetic tree. STM430 sample was observed as a mixed-infection between G12 and G1 strains: G12/G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. A phylogenetic tree analysis revealed that all five Indonesian G12 strains (SOEP379, STM371, STM413, STM430, and STM433) were genetically close to each other in all 11 genome segments with 98.0%-100% nucleotide identities, except VP3 and NSP4 of STM430, suggesting that these strains have originated from a similar ancestral G12 RVA. The VP3 and NSP4 genome segments of STM430-G12P[8] were separated phylogenetically from those of the other four G12 strains, probably due to intra-genotype reassortment between the G12 and G1 Wa-like strains. The change from G12P[6] lineage-II in 2007 to G12P[8] lineage-III 2017-2018 suggests the evolution and diversity of G12 RVAs in Indonesia over the past approximately 10 years.


Subject(s)
Rotavirus Infections , Rotavirus , Child , Humans , Rotavirus/genetics , Indonesia , Phylogeny , Child, Hospitalized , Genome, Viral , Sequence Analysis, DNA , RNA, Viral/genetics , Genotype
2.
Infect Genet Evol ; 88: 104703, 2021 03.
Article in English | MEDLINE | ID: mdl-33401005

ABSTRACT

Noroviruses are recognized as a leading cause of outbreaks and sporadic cases of acute gastroenteritis (AGE) among individuals of all ages worldwide, especially in children <5 years old. We investigated the epidemiology of noroviruses among hospitalized children at two hospitals in East Java, Indonesia. Stool samples were collected from 966 children with AGE during September 2015-July 2019. All samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for the amplification of both the RNA-dependent RNA polymerase (RdRp) and the capsid genes of noroviruses. The genotypes were determined by phylogenetic analyses. In 2015-2019, noroviruses were detected in 12.3% (119/966) of the samples. Children <2 years old showed a significantly higher prevalence than those ≥2 years old (P = 0.01). NoV infections were observed throughout the year, with the highest prevalence in December. Based on our genetic analyses of RdRp, GII.[P31] (43.7%, 31/71) was the most prevalent RdRp genotype, followed by GII.[P16] (36.6%, 26/71). GII.[P31] was a dominant genotype in 2016 and 2018, whereas GII.[P16] was a dominant genotype in 2015 and 2017. Among the capsid genotypes, the most predominant norovirus genotype from 2015 to 2018 was GII.4 Sydney_2012 (33.6%, 40/119). The most prevalent genotype in each year was GII.13 in 2015, GII.4 Sydney_2012 in 2016 and 2018, and GII.3 in 2017. Based on the genetic analyses of RdRp and capsid sequences, the strains were clustered into 13 RdRp/capsid genotypes; 12 of them were discordant, e.g., GII.4 Sydney[P31], GII.3[P16], and GII.13[P16]. The predominant genotype in each year was GII.13[P16] in 2015, GII.4 Sydney[P31] in 2016, GII.3[P16] in 2017, and GII.4 Sydney[P31] in 2018. Our results demonstrate high detection rates and genetic diversity of norovirus GII genotypes in pediatric AGE samples from Indonesia. These findings strengthen the importance of the continuous molecular surveillance of emerging norovirus strains.


Subject(s)
Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Norovirus/classification , Norovirus/genetics , Adolescent , Biodiversity , Capsid Proteins/genetics , Child , Child, Preschool , Feces/virology , Female , Genetic Variation , Genotype , Hospitalization , Humans , Indonesia/epidemiology , Infant , Male , Molecular Epidemiology , Norovirus/isolation & purification , Phylogeny , Prevalence , RNA, Viral , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction
3.
Iran J Microbiol ; 12(5): 445-450, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33604000

ABSTRACT

BACKGROUND AND OBJECTIVES: Probiotics have been widely used for host immune system enhancement but with limited knowledge regarding the immunomodulation mechanisms by which they assist the mucosal innate immune response. We investigated the effects of probiotics on the modulation of the innate mucosal immune response particularly in association with Toll-like receptor (TLR)-2, TLR-4 and nuclear factor-kappa B (NF-κB) p65 and p105. MATERIALS AND METHODS: We randomized 24 male BALB/c mice into four groups. Two groups were administered probiotics for 21 consecutive days; one of these groups was challenged with Lipopolysaccharide (LPS) on day 15. The third group was challenged with only LPS. The fourth group remained untreated. All mice were sacrificed after 21 days. An immunohistochemistry procedure on the ileum was performed and monoclonal antibodies specific for TLR-2, TLR-4 and NF-κB p65 and p105 were used for the analysis of innate lymphoid cells. RESULTS: In the LPS-only treated group, there was a significant decrease in p105, indicating an alternative transcription pathway for the process of pro-inflammatory cytokine production. In the probiotics-only treated group there was significant enhancement of TLR-2 and TLR-4 and NF-κB p65 and p105. When mice treated with probiotics were exposed to LPS, there was a significant decrease in NF-κB p65 and p105, indicating employment of the classical pathway for pro-inflammatory cytokine production. CONCLUSION: Probiotics can enhance the innate mucosal immune response in healthy mice and can maintain the homeostasis of the gut mucosal immune response against LPS through the activation of the classical NF-κB pathway.

4.
Iran J Microbiol ; 11(3): 206-211, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31523403

ABSTRACT

BACKGROUND AND OBJECTIVES: Various non-invasive diagnostic tests are available for the detection of Helicobacter pylori infection. The aim of this study was to compare the sensitivity and specificity of HpSA, salivary IgG, serum IgG, and serum IgM to those of endoscopic-biopsy as the gold standard for the diagnosis of H. pylori infection. MATERIALS AND METHODS: This is a cross-sectional study performed among pediatric patients at Dr. Soetomo General Hospital (Surabaya, Indonesia). Fecal, blood, and saliva samples were collected from all subjects. The results of the HpSA, salivary IgG, serum IgG, and serum IgM tests were compared to the results of endoscopic-biopsy as the gold standard. RESULTS: Of the 37 study participants, H. pylori infection was confirmed in 5 (13.33%) with serum IgG, 23 (63.33%) with serum IgM, 15 (40%) with HpSA, and 26 (70.97%) with salivary IgG. The salivary IgG enzyme-linked immunosorbent assay (ELISA) was the only diagnostic test with significantly different results, as compared to biopsy (p = 0.017). CONCLUSION: The results of this study showed that HpSA, salivary IgG, and serum IgG and IgM were not sufficient to replace endoscopic-biopsy as the gold standard for the diagnosis of H. pylori infection.

5.
Pediatr Gastroenterol Hepatol Nutr ; 22(4): 330-340, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31338308

ABSTRACT

Human breast milk contains numerous biomolecules. Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after lactose and lipids. Amongst the synthetized HMOs, 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) are widely studied and are considered safe for infant nutrition. Several studies have reported the health benefits of HMOs, which include modulation of the intestinal microbiota, anti-adhesive effect against pathogens, modulation of the intestinal epithelial cell response, and development of the immune system. The amount and diversity of HMOs are determined by the genetic background of the mothers (HMO secretors or non-secretors). The non-secretor mothers secrete lower HMOs than secretor mothers. The breastfed infants of secretor mothers gain more health benefit than those of non-secretor mothers. In conclusion, supplementation of infant formula with 2'-FL and LNnT is a promising innovation for infant nutrition.

6.
Front Microbiol ; 10: 940, 2019.
Article in English | MEDLINE | ID: mdl-31130934

ABSTRACT

Group A rotavirus (RVA) is the most important cause of severe gastroenteritis among children worldwide, and effective RVA vaccines have been introduced in many countries. Here we performed a molecular epidemiological analysis of RVA infection among pediatric patients in East Java, Indonesia, during 2015-2018. A total of 432 stool samples were collected from hospitalized pediatric patients with acute gastroenteritis. None of the patients in this cohort had been immunized with an RVA vaccine. The overall prevalence of RVA infection was 31.7% (137/432), and RVA infection was significantly more prevalent in the 6- to 11-month age group than in the other age groups (P < 0.05). Multiplex reverse transcription-PCR (RT-PCR) revealed that the most common G-P combination was equine-like G3P[8] (70.8%), followed by equine-like G3P[6] (12.4%), human G1P[8] (8.8%), G3P[6] (1.5%), and G1P[6] (0.7%). Interestingly, the equine-like strains were exclusively detected until May 2017, but in July 2017 they were completely replaced by a typical human genotype (G1 and G3), suggesting that the dynamic changes in RVA genotypes from equine-like G3 to typical human G1/G3 in Indonesia can occur even in the country with low RVA vaccine coverage rate. The mechanism of the dynamic changes in RVA genotypes needs to be explored. Infants and children with RVA-associated gastroenteritis presented more frequently with some dehydration, vomiting, and watery diarrhea, indicating a greater severity of RVA infection compared to those with non-RVA gastroenteritis. In conclusion, a dynamic change was found in the RVA genotype from equine-like G3 to a typical human genotype. Since severe cases of RVA infection were prevalent, especially in children aged 6 to 11 months or more generally in those less than 2 years old, RVA vaccination should be included in Indonesia's national immunization program.

SELECTION OF CITATIONS
SEARCH DETAIL
...