Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Huan Jing Ke Xue ; 45(8): 4744-4755, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168692

ABSTRACT

Vegetation net primary productivity (NPP) represents the ability of plants to fix ecosystem carbon, which is a key indicator to determine the health status and sustainable development of ecosystems. Its spatial and temporal changes and driving factors play an important role in revealing the status of vegetation restoration and guiding ecological restoration. Based on MODIS17A3 NPP data, land use, and meteorological data from 2001 to 2020, the temporal and spatial variation characteristics and driving factors of vegetation NPP in the Ulansuhai Nur Basin of Inner Mongolia were explored by using the methods of coefficient of variation, Theil-Sen Median trend analysis, Mann-Kendall significance test, Hurst index, and Geodetector. The results showed that: ① From 2001 to 2020, the vegetation NPP in the Ulansuhai Nur Basin showed a fluctuating upward trend, with an average value (in terms of C) of 141.03 g·ï¼ˆm2·a)-1 and an average increase rate of 2.33 g·ï¼ˆm2·a)-1. The vegetation NPP had obvious spatial differentiation, which was characterized by high in the southwest and low in the northeast and high in Hetao Plain and low in sandy land and mountainous areas. ② NPP mainly showed an increasing trend, and the area proportions of increasing, decreasing, and unchanged areas were approximately 80%, 3%, and 17%, respectively. The average coefficient of variation of vegetation NPP was 0.149, which mainly showed low fluctuation change, and the area accounted for approximately 51%. The future change trend of NPP was mainly characterized by anti-persistence, with an area ratio of approximately 75%. ③ Land use, altitude, maximum temperature, and slope were the dominant driving factors of variation NPP change in the Ulansuhai Nur Basin, and the q values were all above 0.200. The interaction between altitude and relative humidity had the greatest explanatory power for the spatial differentiation of vegetation NPP in the Ulansuhai Nur Basin. There were significant differences in the explanatory power of land use and all factors except nighttime light to the spatial differentiation of vegetation NPP in the Ulansuhai Nur Basin. According to the research results, in the future, we should strengthen the ecosystem management of the Ulansuhai Nur Basin; continue to implement strict ecological protection and restoration policies; and comprehensively consider factors such as climate, topography, and human activities to carry out comprehensive ecological management according to local conditions to improve the quality of ecosystem services.


Subject(s)
Ecosystem , China , Environmental Monitoring , Spatio-Temporal Analysis , Carbon/analysis , Plants , Biomass , Trees/growth & development , Satellite Imagery , Conservation of Natural Resources
2.
Huan Jing Ke Xue ; 44(9): 5114-5124, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699829

ABSTRACT

Land use and climate change are the most important factors driving the change in ecosystem services (ESs). It is critical to understand the mechanisms behind such changes for improving ESs. However, there is still a lack of accurate understanding of change and dominant influencing factors of ESs in the agro-pastoral ecotone. This study took Naiman Banner, a typical farming pastoral ecotone in China, as the case study area. Based on the InVEST model, the revised wind erosion equation (RWEQ) and the revised universal soil loss equation (RUSLE) were used to calculate water yield, soil retention, and windbreak and sand-fixing in Naiman Banner in 2005 and 2015. Finally, the impacts of land use and climate change on these three ecosystem services were analyzed by using contribution rate formula, Pearson correlation coefficient, and geodetector methods. The results indicate that:① from 2005 to 2015, water yield and soil retention in Naiman Banner showed an overall upward trend, increasing by 22.41% and 6.74%, respectively, and windbreak and sand-fixing decreased by 66.24%. ② The change in water yield and windbreak and sand-fixing was mainly affected by climate change, and the change in soil retention was mainly affected by land use change. ③ Actual evapotranspiration change and land use change were the main factors affecting the spatial differentiation of water yield, with the explanatory powers of 94.50% and 50.05%, respectively. The main factors influencing the spatial differentiation of windbreak and sand-fixing were actual evapotranspiration change and land desertification degree, with the explanatory power of 19.84% and 16.15%, respectively. ④ The correlation of ESs in Naiman Banner was weak, and only windbreak and sand-fixing and water yield showed a weak significant synergy. Based on the results, we recommend that managers increase the proportion of grassland in sandy areas, implement closed management in pastoral areas, and introduce drip irrigation and other water-saving technologies in farmland, and ecological protection should continue to be given priority in city.

SELECTION OF CITATIONS
SEARCH DETAIL