Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Curr Med Sci ; 43(4): 679-688, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37326888

ABSTRACT

OBJECTIVE: Metabolic disorders are regarded as hallmarks of multiple myeloma (MM) and are responsible for rapid cancer cell proliferation and tumor growth. However, the exact biological roles of metabolites in MM cells have not been fully explored. This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid (Lac) in the proliferation of myeloma cells and cell sensitivity to bortezomib (BTZ). METHODS: Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients. The CCK8 assay and flow cytometry were used to detect cell proliferation, apoptosis, and cell cycle changes. Western blotting was used to detect the potential mechanism and apoptosis- and cycle-related protein changes. RESULTS: Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients. It was significantly correlated with Durie-Salmon Staging (DS Staging) and the International Staging System (ISS Staging) and the serum and urinary involved/uninvolved free light chain ratios. Patients with relatively high lactate levels had a poor treatment response. Moreover, in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells, which was accompanied by an increased proportion of S-phase cells. In addition, Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2 (NFkB2) and RelB. CONCLUSION: Metabolic changes are important in MM cell proliferation and treatment response; lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.


Subject(s)
Antineoplastic Agents , Bortezomib , Drug Resistance, Neoplasm , Lactic Acid , Multiple Myeloma , Adult , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cell Cycle Proteins/metabolism , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Lactic Acid/blood , Lactic Acid/metabolism , Lactic Acid/pharmacology , Metabolome , Multiple Myeloma/blood , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Prognosis
2.
Chemosphere ; 288(Pt 2): 132389, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34606893

ABSTRACT

Ammonia inhibition easily affects the performance of anaerobic digestion (AD) for municipal sludge and the oxidization of volatile fatty acids (VFAs) is the rate-limiting step of this process. Bioaugmentation is considered to be an effective method to alleviate ammonia inhibition of AD, but most study used the hydrogenotrophic methanogens as the bioaugmentation culture. In this study, bioaugmentation of mesophilic AD (MAD) and thermophilic AD (TAD) under ammonia inhibition with syntrophic acetate and propionate oxidizing consortia was investigated. The results showed that the bioaugmented reactors recovered earlier than control reactors with 20 (MAD) and 8 (TAD) days, respectively. The high-throughput 16S rRNA gene sequencing indicated that the relative abundance of carbohydrates fermenter (Lentimicrobium), syntrophic VFAs-oxidizing bacteria (Rikenellaceae_DMER64, Smithella and Syntrophobacter) and acetoclastic and hydrogenotrophic methanogens (Methanosaeta, Methanolinea and Methanospirillum) increased in MAD after bioaugmentation. However, part of the bioaugmentation culture could not adapt to the high free ammonia (FAN) concentration in MAD and the effect was weakened. In TAD, proteolytic bacteria (Keratinibaculum and Tepidimicrobium), syntrophic VFAs-oxidizing bacteria (Syntrophomonas) and hydrogenotrophic methanogen (Methanosarcina) were strengthened. The effect of bioaugmentation in TAD was durable even at higher organic loading rate (OLR), due to its positive influence on microbial community. These results suggested that the different bioaugmentation mechanism occurred in MAD and TAD, which are derived from the synergetic effects of ammonia tolerance and microbial interactions. Our study revealed the VFAs-oxidizing consortia as bioaugmented culture could be the potential strategy to alleviate the ammonia stress of AD.


Subject(s)
Ammonia , Sewage , Anaerobiosis , Fatty Acids, Volatile , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
3.
Neoplasia ; 23(7): 718-730, 2021 07.
Article in English | MEDLINE | ID: mdl-34144267

ABSTRACT

EGFR signaling promotes ovarian cancer tumorigenesis, and high EGFR expression correlates with poor prognosis. However, EGFR inhibitors alone have demonstrated limited clinical benefit for ovarian cancer patients, owing partly to tumor resistance and the lack of predictive biomarkers. Cotargeting EGFR and the PI3K pathway has been previously shown to yield synergistic antitumor effects in ovarian cancer. Therefore, we reasoned that PI3K may affect cellular response to EGFR inhibition. In this study, we revealed PI3K isoform-specific effects on the sensitivity of ovarian cancer cells to the EGFR inhibitor erlotinib. Gene silencing of PIK3CA (p110α) and PIK3CB (p110ß) rendered cells more susceptible to erlotinib. In contrast, low expression of PIK3R2 (p85ß) was associated with erlotinib resistance. Depletion of PIK3R2, but not PIK3CA or PIK3CB, led to increased DNA damage and reduced level of the nonhomologous end joining DNA repair protein BRD4. Intriguingly, these defects in DNA repair were reversed upon erlotinib treatment, which caused activation and nuclear import of p38 MAPK to promote DNA repair with increased protein levels of 53BP1 and BRD4 and foci formation of 53BP1. Remarkably, inhibition of p38 MAPK or BRD4 re-sensitized PIK3R2-depleted cells to erlotinib. Collectively, these data suggest that p38 MAPK activation and the subsequent DNA repair serve as a resistance mechanism to EGFR inhibitor. Combined inhibition of EGFR and p38 MAPK or DNA repair may maximize the therapeutic potential of EGFR inhibitor in ovarian cancer.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , DNA Repair/drug effects , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/metabolism , DNA Copy Number Variations , Disease Management , Disease Models, Animal , Disease Susceptibility , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Models, Biological , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
4.
Mol Cell Oncol ; 7(5): 1780900, 2020.
Article in English | MEDLINE | ID: mdl-32944639

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K), which is composed of the p85 regulatory and p110 catalytic subunits, is known to be downstream of the receptor tyrosine kinase (RTK). Our recent findings revealed that p85ß increases the protein level of AXL (an RTK) to activate p110, suggesting bidirectional regulation between PI3K and RTK.

5.
Nat Commun ; 11(1): 2291, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385243

ABSTRACT

PIK3R2 encodes the p85ß regulatory subunit of phosphatidylinositol 3-kinase and is frequently amplified in cancers. The signaling mechanism and therapeutic implication of p85ß are poorly understood. Here we report that p85ß upregulates the protein level of the receptor tyrosine kinase AXL to induce oncogenic signaling in ovarian cancer. p85ß activates p110 activity and AKT-independent PDK1/SGK3 signaling to promote tumorigenic phenotypes, which are all abolished upon inhibition of AXL. At the molecular level, p85ß alters the phosphorylation of TRIM2 (an E3 ligase) and optineurin (an autophagy receptor), which mediate the selective regulation of AXL by p85ß, thereby disrupting the autophagic degradation of the AXL protein. Therapeutically, p85ß expression renders ovarian cancer cells vulnerable to inhibitors of AXL, p110, or PDK1. Conversely, p85ß-depleted cells are less sensitive to these inhibitors. Together, our findings provide a rationale for pharmacological blockade of the AXL signaling axis in PIK3R2-amplified ovarian cancer.


Subject(s)
Autophagy , Carcinogenesis/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Proteolysis , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Disease-Free Survival , Enzyme Activation , Female , Gene Ontology , Humans , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Nuclear Proteins , Ovarian Neoplasms/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination , Up-Regulation/genetics , Axl Receptor Tyrosine Kinase
6.
Biomaterials ; 35(36): 9689-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25176069

ABSTRACT

Simultaneous in vivo luminescence and X-ray bioimaging in a tissue or animal integrates the advantages of each single-modal imaging technology, and will find widespread application in biological and clinical fields. However, synergistic dual-modal bioimaging that utilizes a new generation of upconversion nanoprobes is still limited. In addition, investigations concentrated on in vivo biodistribution of these nanoprobes may contribute to diagnosis and treatment, but long-term in vivo tracking based on these nanoprobes is rarely reported. In this work, water-soluble NaLuF4: Yb/Er nanophosphors were prepared through modified one-pot simultaneous synthesis and surface modification method. Owing to the outstanding upconverting emissions and large X-ray absorption coefficient/K-edge value of Lu and doped Yb ions, the obtained nanoprobes were successfully used as luminescent nanoprobes and X-ray contrast agents for in vivo synergistic upconversion luminescence and X-ray bioimaging. The in vivo biodistribution of these nanoprobes were observed, and the results based on long-term tracking reveal that the as-prepared nanoprobes first aggregated in the lung of the mouse, transferred to the liver, and finally moved to the spleen.


Subject(s)
Erbium/chemistry , Fluorides/chemistry , Lutetium/chemistry , Polyethylene Glycols/chemistry , Ytterbium/chemistry , Animals , Erbium/pharmacokinetics , Fluorides/pharmacokinetics , Luminescence , Lutetium/pharmacokinetics , Mice , Optical Imaging , Polyethylene Glycols/pharmacokinetics , Radiography , X-Rays , Ytterbium/pharmacokinetics
7.
Dalton Trans ; 43(35): 13343-8, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25070075

ABSTRACT

Polyethylene glycol (PEG) modified BaLuF5:Gd/Yb/Er upconversion nanoparticles (UCNPs) were synthesized by a facile one-pot hydrothermal method for simultaneous synthesis and surface functionalization. The novel, excellently biocompatible and water-soluble bioprobes were used for simultaneous upconversion (UC) luminescence and X-ray bioimaging for the first time. The as-prepared BaLuF5:Gd/Yb/Er UCNPs possess a face-centered cubic structure with an average size of 23.7 ± 2.7 nm. Under 980 nm laser excitation, these UCNPs emitted intense UC luminescence via a two-photon process. In vitro bioimaging and localized luminescence spectra detected from HeLa cells and the background reveal that these UCNPs are ideal candidates for optical bioimaging in the absence of autofluorescence. Furthermore, the synergistic in vivo UC luminescence and X-ray bioimaging reveal that these PEG-modified BaLuF5:Gd/Yb/Er UCNPs can be successfully used as ideal dual-modal bioprobes. These results demonstrate that these PEG modified UCNPs are ideal multi-modal nanoprobes for bioimaging.


Subject(s)
Fluorescent Dyes/chemical synthesis , Luminescent Measurements/methods , Nanoparticles/chemistry , Polyethylene Glycols/chemical synthesis , Animals , Barium/chemistry , Erbium/chemistry , Fluorine/chemistry , Gadolinium/chemistry , HeLa Cells , Humans , Lutetium/chemistry , Mice , Mice, Nude , Molecular Imaging/methods , X-Ray Diffraction , Ytterbium/chemistry
8.
ACS Appl Mater Interfaces ; 6(6): 3839-46, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24597514

ABSTRACT

In this work, the amine-functionalized NaYbF4:Er nanoparticles were developed as dual-modal nanoprobes for synergistic upconversion (UC) luminescence and X-ray imaging in a single system by a simple one-step method of simultaneous synthesis and surface modification. The water-soluble NaYbF4:Er nanoparticles present excellent green and dominant red UC emissions. The in vitro cell imaging shows that the high-contrast green and intense red UC emissions can be observed from HeLa cells treated with these nanoparticles, indicating the successful labeling of HeLa cells. Moreover, the localized spectra measured from HeLa cells and background presented significant green and dominant red UC emissions with the absence of any autofluorescence, further verifying that these nanoparticles can be successfully used as ideal probes for optical UC bioimaging with high contrast and non-autofluorescence. In addition, the amine-functionalized NaYbF4:Er nanoparticles maintained low cell toxicity in HeLa cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. More importantly, these amine-functionalized NaYbF4:Er nanoparticles can also be used as X-ray imaging, owing to the large X-ray absorption efficiency of the Yb ion. The synergistic in vivo UC and X-ray imaging present significant UC luminescence and X-ray signals in the same region of a nude mouse, and the two signals are matched very well, which provides direct evidence for simultaneous UC luminescence and X-ray imaging in a single compound of lanthanide-doped material. Moreover, ex vivo UC imaging shows that these nanoparticles are first accumulated in the lung and gradually translocated from the lung into the liver. These results demonstrate that the amine-functionalized NaYbF4:Er nanoparticles presented here are very attractive nanoprobes for dual-modal UC luminescence and X-ray imaging with low cytotoxicity, autofluorescence free, and synergistic combination of the advantages of the two imaging modalities.


Subject(s)
Cells/chemistry , Lanthanoid Series Elements/chemistry , Molecular Imaging/instrumentation , Nanoparticles/chemistry , Ytterbium/chemistry , Animals , Cells/radiation effects , HeLa Cells , Humans , Luminescence , Mice , Mice, Nude , X-Rays
9.
Nanoscale ; 6(5): 2855-60, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24469246

ABSTRACT

In this paper, multi-functional hexagonal phase NaErF4:Yb nanorods were synthesized by a facile hydrothermal method. The upconversion luminescence (UCL) intensity and red to green ratio of the multi-functional NaErF4 nanorods can be improved by Yb(3+) doping. More importantly, owing to the decreased distance of Er and Yb, the significant enhancement of red UCL can be obtained, which is different to the usual green UCL of Yb/Er doped NaYF4 host. In addition, the intensity of UCL is strongest when the Yb(3+)-doped concentration reached 30%. The in vitro cell imaging and localized UCL spectra taken from HeLa cells revealed that these NaErF4: 30% Yb(3+) nanorods are ideal nanoprobes with absence of autofluorescence for optical bioimaging. Moreover, these nanorods possess large X-ray absorption ions (Er(3+) and doped Yb(3+)), and were successfully used as contrast agents for in vivo X-ray bioimaging for the first time. In addition to the excellent UCL and X-ray absorption properties, these nanorods present significant paramagnetic properties and can be used as T2-weighted magnetic resonance imaging (MRI) agents. Therefore, these enhanced red UCL NaErF4 nanocrystals with excellent paramagnetic properties and X-ray absorption properties can be used as promising multi-modal nanoprobes for optical bioimaging, MRI, computed X-ray tomography (CT), and may have potential applications in bioseparation.


Subject(s)
Contrast Media/chemistry , Erbium/chemistry , Fluorides/chemistry , Magnetic Resonance Imaging , Nanotubes/chemistry , Animals , HeLa Cells , Humans , Mice , Microscopy, Confocal , Radiography , Skin/diagnostic imaging
10.
Biomaterials ; 35(9): 2934-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24406214

ABSTRACT

Visualization of blood vessel of lung can improve the detection of the lung and pulmonary vascular diseases. However, research on visualization of blood vessel of lung using the new generation upconversion nanoprobes is still scarce. Herein, high quality hexagonal phase NaLuF4:Gd/Yb/Er nanorods were synthesized by a simple hydrothermal method through doping Gd(3+). Doping Gd can not only promote the phase transformation from cubic to hexagonal and the shape evolution from microtube to rod-like, but also provide an additional magnetic properties for biomedical application. The as-prepared nanorods were further converted to water solubility by treating with HCl for eliminating the capped oleic acid. The ligand-free nanorods were successfully used for high-contrast upconversion fluorescent bioimaging of HeLa cells. Moreover, the in vivo synergistic upconversion fluorescent and X-ray imaging of nude mice were demonstrated by subcutaneously and intravenously administrated the ligand-free nanorods. The X-ray signals were matched well with the upconversion signal, indicating the successfully synergistic bioimaging. The ex-vivo X-ray and upconversion fluorescent imaging of various organs revealed that the nanorods were mainly accumulated in liver and lung. More importantly, the blood vessel of the lung can be readily visualized when these ligand-free nanorods are intravenously injected. Apart from the synergistic X-ray and upconversion bioimaging, the ligand-free nanorods can also possess excellent paramagnetic property for potential magnetic resonance imaging contrast agent. Our results have demonstrated the enhanced visualization of blood vessel of lung performed by dual-modal bioimaging of X-ray and upconversion fluorescence, revealing the great promise of these nanoprobes in angiography imaging. Such a new technique enables the integration of the two bioimaging techniques by combining their collective strengths and minimizing their shortcomings.


Subject(s)
Blood Vessels/anatomy & histology , Diagnostic Imaging/methods , Erbium , Fluorides , Gadolinium , Lutetium , Nanotubes/chemistry , Optical Imaging/methods , Ytterbium , Animals , Fluorescence , HeLa Cells , Humans , Injections, Intravenous , Ligands , Lung/blood supply , Magnetic Phenomena , Mice , Mice, Nude , Nanotubes/ultrastructure , Organ Specificity , Particle Size , X-Rays
11.
Nanotechnology ; 25(6): 065703, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24434274

ABSTRACT

In this study, monodispersed and high-quality hexagonal phase LaF3 nanocrystals with different shapes and sizes were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared LaF3 nanocrystals were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and analysis of the upconversion spectra. The TEM results reveal that the samples present high uniformity and monodispersity and are self-assembled into a two-dimensional ordered array. Moreover, the shape, size and structure of the nanocrystals can be readily tuned by adjusting the NaF content. With increasing content of NaF, the shape of the LaF3 nanocrystals changed from particle to rod and the size gradually increased. More importantly, high NaF content favors the formation of one-dimensional nanorods. High Y b(3+) and Er(3+) content is beneficial to synthesizing the hexagonal phase of NaLaF4 nanocrystals. Furthermore, the TEM results show that the shape and size of the LaF3 nanocrystals can also be tuned by doping lanthanide ions, which provides a new route for size and shape control of nanocrystals. In addition, LaF3 nanocrystals co-doped with Y b(3+)/Tm(3+) present efficient near-infrared (NIR)-NIR upconversion luminescence. More importantly, the upconversion luminescent colors can be readily tuned from blue-white to blue by adjusting the excitation power. Therefore, it is expected that these LaF3 nanocrystals with well-controlled shape, size and NIR-NIR upconversion emission have potential applications in biomedical imaging fields.


Subject(s)
Fluorides/chemistry , Lanthanoid Series Elements/chemistry , Lanthanum/chemistry , Nanoparticles/chemistry , Color , Crystallization , Diagnostic Imaging , Ions , Luminescence , Microscopy, Electron, Transmission , Oleic Acid/chemistry , Oxides/chemistry , Solvents/chemistry , Spectroscopy, Near-Infrared , Temperature , X-Ray Diffraction
12.
J Mater Chem B ; 2(38): 6527-6533, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-32261814

ABSTRACT

Small-sized BaLaF5:Mn/Yb/Er upconversion nanoparticles (UCNPs) were successfully synthesized for dual-modal X-ray and upconversion (UC) luminescence bioimaging by a simple solvothermal method. The size, shape, and UC luminescence intensity of the as-prepared UCNPs can be readily modified by changing the contents of Mn2+. The size of BaLaF5 UCNPs doped with Mn2+ decreased largely compared with Mn-free UCNPs. When increasing the content of Mn2+ from 5% to 20%, the size of UCNPs was gradually increased from 6.5 nm to 9.7 nm. The as-prepared BaLaF5 UCNPs doped with 20% Mn2+ present intense UC luminescence. The in vitro UC luminescence imaging of HeLa cells and localized spectra detected from HeLa cells and the background based on these BaLaF5:Mn/Yb/Er (20/20/2%) UCNPs indicate that this sample can serve as an ideal bioprobe with the absence of autofluorescence under the excitation of 980 nm laser. Moreover, an obvious UC signal was observed in in vivo UC bioimaging, demonstrating that these BaLaF5:Mn/Yb/Er (20/20/2%) UCNPs can also be used as bioprobes for whole body optical bioimaging. In addition, owing to the high X-ray mass absorption coefficients of Ba2+, La3+ and the doped Yb3+, the simultaneous X-ray and UC in vivo bioimaging of a nude mouse further demonstrate that the as-prepared UCNPs can be successfully used as dual-modal bioprobes. Ex vivo UC bioimaging revealed that these UCNPs gathered at the lung of a mouse at the initial time, demonstrating that this sample was suitable for the detection of the lung diseases. In addition, the cytotoxicity test showed that the UCNPs possessed little toxicity. Therefore, the small-sized BaLaF5:Yb/Er/Mn UCNPs are ideal nanoprobes for dual-modal UC luminescence/X-ray bioimaging with non-autofluorescence, and enhanced detection of the lung diseases.

13.
Biomater Sci ; 2(10): 1404-1411, 2014 Oct 26.
Article in English | MEDLINE | ID: mdl-32481916

ABSTRACT

In this paper, we report a self-sacrificing route for fabrication of the Ce/Tb co-doped GdPO4 hollow spheres under hydrothermal conditions using the Gd(OH)CO3:Ce/Tb precursor as a template and NH4H2PO4 as a phosphorus source. The X-ray diffraction (XRD) patterns show the amorphous crystal nature of the precursor and pure hexagonal phase of the hollow spheres. The microstructures of the as-prepared precursor and hollow spheres were characterized by transmission electron microscopy (TEM) and scanning TEM (STEM) assays. The results reveal the urchin-like morphology of the solid precursor and hollow spheres. Bright green emissions of the spheres have been detected using an ultraviolet (UV) lamp at 288 nm and the calculated CIE coordinates are (0.289, 0.491). The energy transfer mechanism of Ce and Tb ions in the GdPO4 host has been investigated. The quantum efficiency of the hollow spheres was measured to be 61% and the lifetime calculated as 6.94 ms. In addition, the magnetic mass susceptibilities and magnetization of the spheres are found to be 6.39 × 10-5 emu gOe-1 and 1.27 emu g-1 at 20 kOe, respectively. Owing to their excellent downshift luminescence properties, the as-prepared GdPO4:Ce/Tb hollow spheres have been successfully applied in in vivo luminescence and X-ray bioimaging for the first time. Moreover, three-dimensional (3D) in vivo X-ray bioimaging of the mouse can provide the accurate location from multiple directions. The high contrast ratio makes the spheres a promising X-ray contrast agent. Due to the hollow structure, these GdPO4:Ce/Tb hollow spheres were also used as drug delivery systems for doxorubicin (DOX) loading and release. The drug loading efficiency was measured to be 17% at a pH value of 7.4, and the pH-dependent drug release was studied. 47% of the loaded DOX was released within 10 h when pH = 5, while there was only 30% during the same time at pH = 7.4 and it took nearly 48 h to reach a comparable level. The different release nature gives these spheres a promising application in targeted therapy of tumors.

14.
Nanoscale ; 5(13): 6023-9, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23715609

ABSTRACT

In this work, we developed a novel and biocompatible dual-modal nanoprobe based on single-phase amine-functionalized BaYF5:Yb/Er nanoparticles (NPs) for upconversion (UC) fluorescence and in vivo computed X-ray tomography (CT) bioimaging for the first time. High-quality water-soluble amine-functionalized BaYF5:Yb/Er NPs with an average size of 24 nm were synthesized by a facile environmentally friendly hydrothermal method for simultaneous synthesis and surface functionalization. Structure investigation based on the Rietveld refinement method revealed that the as-synthesized BaYF5:Yb/Er NPs present a cubic phase structure, which differs from the previously reported tetragonal structure. Under 980 nm excitation, high-contrast green and red UC emissions were observed from HeLa cells incubated with these amine-functionalized NPs. The UC spectra measured from the NPs incubated with HeLa cells presented only green and red UC emissions without any autofluorescence, further revealing that these NPs are ideal candidates for fluorescent bioimaging. In addition, the cell cytotoxicity test showed low cell toxicity of these NPs. These amine-functionalized NPs were also successfully used as CT agents for in vivo CT imaging because of the efficient X-ray absorption efficiency of Ba and doped Yb ions. A prolonged (2 h) signal enhancement of the spleen in a mouse was observed in CT imaging, which can improve the detection of splenic diseases. More importantly, the simultaneous X-ray and UC in vivo bioimaging was demonstrated in a nude mouse for the first time, indicating the as-prepared UCNPs can be successfully used as dual-modal bioprobes. These results demonstrate that BaYF5:Yb/Er NPs are ideal nanoprobes for dual-modal fluorescent/CT bioimaging with low cytotoxicity, non-autofluorescence, and enhanced detection of the spleen.


Subject(s)
Contrast Media , Fluorescent Dyes , Materials Testing , Nanoparticles/chemistry , Spleen , Animals , Barium/chemistry , Barium/pharmacology , Contrast Media/chemical synthesis , Contrast Media/chemistry , Contrast Media/pharmacology , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Mice , Mice, Nude , Microscopy, Fluorescence/methods , Spleen/diagnostic imaging , Spleen/metabolism , Tomography, X-Ray Computed/methods , Yttrium/chemistry , Yttrium/pharmacology
15.
Int J Mol Sci ; 15(1): 1-14, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24451124

ABSTRACT

The effect of chemotherapy drug Mitomycin C (MMC) in combination with recombinant adeno-associated virus II (rAAV2) in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2's bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.


Subject(s)
Antibiotics, Antineoplastic/therapeutic use , Dependovirus/genetics , Mitomycin/therapeutic use , Animals , Cell Line, Tumor , Cell Survival/drug effects , Genetic Therapy , Genetic Vectors/metabolism , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mitomycin/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transplantation, Heterologous , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
16.
Zhonghua Shao Shang Za Zhi ; 29(6): 519-25, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24495638

ABSTRACT

Burn patients often suffer from different degrees of dysfunction, such as residual burn wounds, formation of hyperplastic scar, scar itching, cardiopulmonary dysfunction, limitation of motion, and psychological disorders, which exert severe impact on their daily life. This article reviews various rehabilitation treatments for dysfunction after burn injury to promote rehabilitation of burn patients.


Subject(s)
Burns/rehabilitation , Rehabilitation/methods , Burns/physiopathology , China , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...