Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139260

ABSTRACT

Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.


Subject(s)
Endometrial Neoplasms , Signal Transduction , Humans , Female , Receptors, OSM-LIF/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Endometrial Neoplasms/drug therapy
2.
Cells ; 12(9)2023 04 29.
Article in English | MEDLINE | ID: mdl-37174684

ABSTRACT

Eukaryotic cells maintain cellular fitness by employing well-coordinated and evolutionarily conserved processes that negotiate stress induced by internal or external environments. These processes include the unfolded protein response, autophagy, endoplasmic reticulum-associated degradation (ERAD) of unfolded proteins and altered mitochondrial functions that together constitute the ER stress response. Here, we show that the RNA demethylase ALKBH5 regulates the crosstalk among these processes to maintain normal ER function. We demonstrate that ALKBH5 regulates ER homeostasis by controlling the expression of ER lipid raft associated 1 (ERLIN1), which binds to the activated inositol 1, 4, 5,-triphosphate receptor and facilitates its degradation via ERAD to maintain the calcium flux between the ER and mitochondria. Using functional studies and electron microscopy, we show that ALKBH5-ERLIN-IP3R-dependent calcium signaling modulates the activity of AMP kinase, and consequently, mitochondrial biogenesis. Thus, these findings reveal that ALKBH5 serves an important role in maintaining ER homeostasis and cellular fitness.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum-Associated Degradation , AlkB Homolog 5, RNA Demethylase/metabolism , Autophagy , Endoplasmic Reticulum/metabolism , Signal Transduction , Mitochondria/metabolism , Homeostasis
3.
Breast Cancer Res Treat ; 200(1): 151-162, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199805

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Oncogenic PELP1 is frequently overexpressed in TNBC, and it has been demonstrated that PELP1 signaling is essential for TNBC progression. The therapeutic utility of targeting PELP1 in TNBC, however, remains unknown. In this study, we investigated the effectiveness of SMIP34, a recently developed PELP1 inhibitor for the treatment of TNBC. METHODS: To ascertain the impact of SMIP34 treatment, we used seven different TNBC models for testing cell viability, colony formation, invasion, apoptosis, and cell cycle analysis. Western blotting and RT-qPCR were used to determine the mechanistic insights of SMIP34 action. Using xenograft and PDX tumors, the ability of SMIP34 in suppressing proliferation was examined both ex vivo and in vivo. RESULTS: TNBC cells' viability, colony formation, and invasiveness were all decreased by SMIP34 in in vitro cell-based assays, while apoptosis was increased. SMIP34 treatment promoted the degradation of PELP1 through the proteasome pathway. RT-qPCR analyses confirmed that SMIP34 treatment downregulated PELP1 target genes. Further, SMIP34 treatment substantially downregulated PELP1 mediated extranuclear signaling including ERK, mTOR, S6 and 4EBP1. Mechanistic studies confirmed downregulation of PELP1 mediated ribosomal biogenesis functions including downregulation of cMyc and Rix complex proteins LAS1L, TEX-10, and SENP3. The proliferation of TNBC tumor tissues was decreased in explant experiments by SMIP34. Additionally, SMIP34 treatment markedly decreased tumor progression in both TNBC xenograft and PDX models. CONCLUSIONS: Together, these findings from in vitro, ex vivo, and in vivo models show that SMIP34 may be a useful therapeutic agent for inhibiting PELP1 signaling in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Co-Repressor Proteins , Cysteine Endopeptidases/metabolism , Signal Transduction , Transcription Factors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
4.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35950923

ABSTRACT

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Subject(s)
Breast Neoplasms , Co-Repressor Proteins , Transcription Factors , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Co-Repressor Proteins/antagonists & inhibitors , Co-Repressor Proteins/metabolism , Estrogen Receptor alpha/genetics , Estrogens , Female , Glutamic Acid , Humans , Leucine , Proline , Proteasome Endopeptidase Complex , Receptors, Estrogen/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
5.
Cancer Lett ; 540: 215717, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35568265

ABSTRACT

Aberrant activities of various cell cycle and DNA repair proteins promote cancer growth and progression and render them resistant to therapies. Here, we demonstrate that the anti-depressant imipramine blocks growth of triple-negative (TNBC) and estrogen receptor-positive (ER+) breast cancers by inducing cell cycle arrest and by blocking heightened homologous recombination (HR) and non-homologous end joining-mediated (NHEJ) DNA repair activities. Our results reveal that imipramine inhibits the expression of several cell cycle- and DNA repair-associated proteins including E2F1, CDK1, Cyclin D1, and RAD51. In addition, we show that imipramine inhibits the growth of ER + breast cancers by inhibiting the estrogen receptor- α (ER-α) signaling. Our studies in preclinical mouse models and ex vivo explants from breast cancer patients show that imipramine sensitizes TNBC to the PARP inhibitor olaparib and endocrine resistant ER + breast cancer to anti-estrogens. Our studies suggest that repurposing imipramine could enhance routine care for breast cancer patients. Based on these results, we designed an ongoing clinical trial, where we are testing the efficacy of imipramine for treating patients with triple-negative and estrogen receptor-positive breast cancer. Since aberrant DNA repair activity is used by many cancers to survive and become resistant to therapy, imipramine could be used alone and/or with currently used drugs for treating many aggressive cancers.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , DNA Repair , Female , Humans , Imipramine/pharmacology , Imipramine/therapeutic use , Mice , Receptors, Estrogen/metabolism , Triple Negative Breast Neoplasms/genetics
6.
Commun Biol ; 5(1): 493, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610507

ABSTRACT

The major limitations of DNA-targeting chemotherapy drugs include life-threatening toxicity, acquired resistance and occurrence of secondary cancers. Here, we report a small molecule, Carbazole Blue (CB), that binds to DNA and inhibits cancer growth and metastasis by targeting DNA-related processes that tumor cells use but not the normal cells. We show that CB inhibits the expression of pro-tumorigenic genes that promote unchecked replication and aberrant DNA repair that cancer cells get addicted to survive. In contrast to chemotherapy drugs, systemic delivery of CB suppressed breast cancer growth and metastasis with no toxicity in pre-clinical mouse models. Using PDX and ex vivo explants from estrogen receptor (ER) positive, ER mutant and TNBC patients, we further demonstrated that CB effectively blocks therapy-sensitive and therapy-resistant breast cancer growth without affecting normal breast tissue. Our data provide a strong rationale to develop CB as a viable therapeutic for treating breast cancers.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA , DNA Repair , Female , Humans , Mice , Receptors, Estrogen/metabolism
7.
Breast Cancer Res ; 24(1): 26, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395812

ABSTRACT

BACKGROUND: Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. METHODS: We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. RESULTS: RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. CONCLUSIONS: This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/pharmacology , Humans , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Saccharomyces cerevisiae/metabolism , Tamoxifen/pharmacology , Transcription Factors/genetics
8.
Cancer Res ; 82(10): 1872-1889, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35303054

ABSTRACT

Osteosarcoma is the most common malignancy of the bone, yet the survival for patients with osteosarcoma is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In patients with osteosarcoma, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy-number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Methyl RNA immunoprecipitation sequencing analysis and functional studies showed that ALKBH5 mediates its protumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key protumorigenic genes, consequently driving unchecked cell-cycle progression, incessant replication, and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth. SIGNIFICANCE: RNA demethylase ALKBH5 upregulates USP22 and RNF40 to inhibit histone H2A ubiquitination and induces expression of key replication and DNA repair-associated genes, driving osteosarcoma progression.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Osteosarcoma , AlkB Homolog 5, RNA Demethylase/genetics , Histones/metabolism , Humans , Methylation , Osteosarcoma/genetics , RNA/genetics , RNA/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Ubiquitins/genetics
9.
Elife ; 112022 01 21.
Article in English | MEDLINE | ID: mdl-35060905

ABSTRACT

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Subject(s)
DNA Methylation/physiology , Methyltransferases/metabolism , DNA, Single-Stranded/metabolism , Deoxyadenosines/metabolism , Humans , RNA/chemistry , RNA/metabolism
10.
Endocrinology ; 163(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34902009

ABSTRACT

Concordant transcriptional regulation can generate multiple gene products that collaborate to achieve a common goal. Here we report a case of concordant transcriptional regulation that instead drives a single protein to be produced in the same cell type from divergent promoters. This gene product-the RHOX5 homeobox transcription factor-is translated from 2 different mRNAs with different 5' untranslated regions (UTRs) transcribed from alternative promoters. Despite the fact that these 2 promoters-the proximal promoter (Pp) and the distal promoter (Pd)-exhibit different patterns of tissue-specific activity, share no obvious sequence identity, and depend on distinct transcription factors for expression, they exhibit a remarkably similar expression pattern in the testes. In particular, both depend on androgen signaling for expression in the testes, where they are specifically expressed in Sertoli cells and have a similar stage-specific expression pattern during the seminiferous epithelial cycle. We report evidence for 3 mechanisms that collaborate to drive concordant Pp/Pd expression. First, both promoters have an intrinsic ability to respond to androgen receptor and androgen. Second, the Pp acts as an enhancer to promote androgen-dependent transcription from the Pd. Third, Pd transcription is positively autoregulated by the RHOX5 protein, which is first produced developmentally from the Pp. Together, our data support a model in which the Rhox5 homeobox gene evolved multiple mechanisms to activate both of its promoters in Sertoli cells to produce Rhox5 in an androgen-dependent manner during different phases of spermatogenesis.


Subject(s)
Androgens/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Promoter Regions, Genetic , Sertoli Cells/metabolism , Transcription Factors/genetics , 5' Untranslated Regions , Animals , DNA Methylation , Genes, Homeobox , Male , Mice , Mice, Inbred C57BL , Plasmids/metabolism , Protein Isoforms , Receptors, Androgen/metabolism , Seminiferous Tubules/metabolism , Spermatogenesis , Testis/metabolism , Transcription Factors/metabolism
11.
Commun Biol ; 4(1): 1235, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716410

ABSTRACT

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Leukemia Inhibitory Factor Receptor alpha Subunit/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Survival/drug effects , Female , Histone Deacetylase Inhibitors/administration & dosage , Mice , Mice, SCID
12.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34417181

ABSTRACT

Genome-wide loss-of-function screens have revealed genes essential for cancer cell proliferation, called cancer dependencies. It remains challenging to link cancer dependencies to the molecular compositions of cancer cells or to unscreened cell lines and further to tumors. Here, we present DeepDEP, a deep learning model that predicts cancer dependencies using integrative genomic profiles. It uses a unique unsupervised pretraining that captures unlabeled tumor genomic representations to improve the learning of cancer dependencies. We demonstrated DeepDEP's improvement over conventional machine learning methods and validated the performance with three independent datasets. By systematic model interpretations, we extended the current dependency maps with functional characterizations of dependencies and a proof-of-concept in silico assay of synthetic essentiality. We applied DeepDEP to pan-cancer tumor genomics and built the first pan-cancer synthetic dependency map of 8000 tumors with clinical relevance. In summary, DeepDEP is a novel tool for investigating cancer dependency with rapidly growing genomic resources.


Subject(s)
Deep Learning , Neoplasms , Genomics/methods , Humans , Machine Learning , Neoplasms/genetics , Neoplasms/pathology
13.
Sci Adv ; 7(31)2021 Jul.
Article in English | MEDLINE | ID: mdl-34321211

ABSTRACT

The role of RNA methylation on N 6-adenosine (m6A) in cancer has been acknowledged, but the underlying mechanisms remain obscure. Here, we identified homeobox containing 1 (HMBOX1) as an authentic target mRNA of m6A machinery, which is highly methylated in malignant cells compared to the normal counterparts and subject to expedited degradation upon the modification. m6A-mediated down-regulation of HMBOX1 causes telomere dysfunction and inactivation of p53 signaling, which leads to chromosome abnormalities and aggressive phenotypes. CRISPR-based, m6A-editing tools further prove that the methyl groups on HMBOX1 per se contribute to the generation of altered cancer genome. In multiple types of human cancers, expression of the RNA methyltransferase METTL3 is negatively correlated with the telomere length but favorably with fractions of altered cancer genome, whereas HMBOX1 mRNA levels show the opposite patterns. Our work suggests that the cancer-driving genomic alterations may potentially be fixed by rectifying particular epitranscriptomic program.

14.
Mol Carcinog ; 59(3): 281-292, 2020 03.
Article in English | MEDLINE | ID: mdl-31872914

ABSTRACT

Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.


Subject(s)
Cerebellar Neoplasms/metabolism , Co-Repressor Proteins/metabolism , Medulloblastoma/metabolism , NF-kappa B/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Co-Repressor Proteins/analysis , Co-Repressor Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Transcription Factors/analysis , Transcription Factors/genetics
15.
Mol Cancer Ther ; 18(8): 1341-1354, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31142661

ABSTRACT

Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling.See related commentary by Shi et al., p. 1337.


Subject(s)
Triple Negative Breast Neoplasms , Cell Line, Tumor , Humans , Leukemia Inhibitory Factor , Leukemia Inhibitory Factor Receptor alpha Subunit , Receptors, OSM-LIF , Signal Transduction
16.
Nat Commun ; 9(1): 4541, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382096

ABSTRACT

Despite improvements in overall survival, only a modest percentage of patients survives high-risk medulloblastoma. The devastating side effects of radiation and chemotherapy substantially reduce quality of life for surviving patients. Here, using genomic screens, we identified miR-584-5p as a potent therapeutic adjuvant that potentiates medulloblastoma to radiation and vincristine. MiR-584-5p inhibited medulloblastoma growth and prolonged survival of mice in pre-clinical tumor models. MiR-584-5p overexpression caused cell cycle arrest, DNA damage, and spindle defects in medulloblastoma cells. MiR-584-5p mediated its tumor suppressor and therapy-sensitizing effects by targeting HDAC1 and eIF4E3. MiR-584-5p overexpression or HDAC1/eIF4E3 silencing inhibited medulloblastoma stem cell self-renewal without affecting neural stem cell growth. In medulloblastoma patients, reduced expression of miR-584-5p correlated with increased levels of HDAC1/eIF4E3. These findings identify a previously undefined role for miR-584-5p/HDAC1/eIF4E3 in regulating DNA repair, microtubule dynamics, and stemness in medulloblastoma and set the stage for a new way to treat medulloblastoma using miR-584-5p.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , DNA Damage , Medulloblastoma/genetics , Medulloblastoma/pathology , MicroRNAs/metabolism , Spindle Apparatus/metabolism , Vincristine/pharmacology , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase 1/metabolism , Mice, Nude , MicroRNAs/genetics , Microtubules/drug effects , Microtubules/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Radiation, Ionizing , Signal Transduction/drug effects , Spindle Apparatus/drug effects , Spindle Apparatus/radiation effects
17.
Sci Adv ; 4(10): eaar8263, 2018 10.
Article in English | MEDLINE | ID: mdl-30306128

ABSTRACT

The importance of RNA methylation in biological processes is an emerging focus of investigation. We report that altering m6A levels by silencing either N 6-adenosine methyltransferase METTL14 (methyltransferase-like 14) or demethylase ALKBH5 (ALKB homolog 5) inhibits cancer growth and invasion. METTL14/ALKBH5 mediate their protumorigenic function by regulating m6A levels of key epithelial-mesenchymal transition and angiogenesis-associated transcripts, including transforming growth factor-ß signaling pathway genes. Using MeRIP-seq (methylated RNA immunoprecipitation sequencing) analysis and functional studies, we find that these target genes are particularly sensitive to changes in m6A modifications, as altered m6A status leads to aberrant expression of these genes, resulting in inappropriate cell cycle progression and evasion of apoptosis. Our results reveal that METTL14 and ALKBH5 determine the m6A status of target genes by controlling each other's expression and by inhibiting m6A reader YTHDF3 (YTH N 6-methyladenosine RNA binding protein 3), which blocks RNA demethylase activity. Furthermore, we show that ALKBH5/METTL14 constitute a positive feedback loop with RNA stability factor HuR to regulate the stability of target transcripts. We discover that hypoxia alters the level/activity of writers, erasers, and readers, leading to decreased m6A and consequently increased expression of target transcripts in cancer cells. This study unveils a previously undefined role for m6A in cancer and shows that the collaboration among writers-erasers-readers sets up the m6A threshold to ensure the stability of progrowth/proliferation-specific genes, and protumorigenic stimulus, such as hypoxia, perturbs that m6A threshold, leading to uncontrolled expression/activity of those genes, resulting in tumor growth, angiogenesis, and progression.


Subject(s)
Adenosine/analogs & derivatives , AlkB Homolog 5, RNA Demethylase/metabolism , Methyltransferases/metabolism , Neoplasms/pathology , RNA-Binding Proteins/metabolism , Adenosine/genetics , Adenosine/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , Animals , Cell Cycle/genetics , Cell Line, Tumor , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Feedback, Physiological , Female , Gene Expression Regulation, Neoplastic , Humans , Methyltransferases/genetics , Mice, Nude , Neoplasms/genetics , Neoplasms/metabolism , Neovascularization, Pathologic/genetics , RNA-Binding Proteins/genetics , Tumor Hypoxia/genetics , Xenograft Model Antitumor Assays
18.
Int J Genomics ; 2018: 1351964, 2018.
Article in English | MEDLINE | ID: mdl-30009162

ABSTRACT

BACKGROUND: Compared with the well-studied 5-methylcytosine (m5C) in DNA, the role and topology of epitranscriptome m5C remain insufficiently characterized. RESULTS: Through analyzing transcriptome-wide m5C distribution in human and mouse, we show that the m5C modification is significantly enriched at 5' untranslated regions (5'UTRs) of mRNA in human and mouse. With a comparative analysis of the mRNA and DNA methylome, we demonstrate that, like DNA methylation, transcriptome m5C methylation exhibits a strong clustering effect. Surprisingly, an inverse correlation between mRNA and DNA m5C methylation is observed at CpG sites. Further analysis reveals that RNA m5C methylation level is positively correlated with both RNA expression and RNA half-life. We also observed that the methylation level of mitochondrial RNAs is significantly higher than RNAs transcribed from the nuclear genome. CONCLUSIONS: This study provides an in-depth topological characterization of transcriptome-wide m5C modification by associating RNA m5C methylation patterns with transcriptional expression, DNA methylations, RNA stabilities, and mitochondrial genome.

19.
Article in English | MEDLINE | ID: mdl-29610101

ABSTRACT

N6-Methyladenosine (m6A) transcriptome methylation is an exciting new research area that just captures the attention of research community. We present in this paper, MeTDiff, a novel computational tool for predicting differential m6A methylation sites from Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) data. Compared with the existing algorithm exomePeak, the advantages of MeTDiff are that it explicitly models the reads variation in data and also devices a more power likelihood ratio test for differential methylation site prediction. Comprehensive evaluation of MeTDiff's performance using both simulated and real datasets showed that MeTDiff is much more robust and achieved much higher sensitivity and specificity over exomePeak. The R package "MeTDiff" and additional details are available at: https://github.com/compgenomics/MeTDiff.


Subject(s)
Adenosine/analogs & derivatives , Sequence Analysis, RNA/methods , Software , Adenosine/chemistry , Adenosine/genetics , Adenosine/metabolism , Algorithms , Cell Line, Tumor , Computational Biology , Databases, Genetic , Humans , Methylation , RNA/analysis , RNA/chemistry
20.
Oncotarget ; 8(49): 85984-85996, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156771

ABSTRACT

Deregulation of apoptosis is central to cancer progression and a major obstacle to effective treatment. The Bcl-2 gene family members play important roles in the regulation of apoptosis and are frequently altered in cancers. One such member is pro-apoptotic protein Bcl-2-related Ovarian Killer (BOK). Despite its critical role in apoptosis, the regulation of BOK expression is poorly understood in cancers. Here, we discovered that miR-296-5p regulates BOK expression by binding to its 3'-UTR in breast cancers. Interestingly, miR-296-5p also regulates the expression of anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1), which is highly expressed in breast cancers. Our results reveal that Mcl-1 and BOK constitute a regulatory feedback loop as ectopic BOK expression induces Mcl-1, whereas silencing of Mcl-1 results in reduced BOK levels in breast cancer cells. In addition, we show that silencing of Mcl-1 but not BOK reduced the long-term growth of breast cancer cells. Silencing of both Mcl-1 and BOK rescued the effect of Mcl-1 silencing on breast cancer cell growth, suggesting that BOK is important for attenuating cell growth in the absence of Mcl-1. Depletion of BOK suppressed caspase-3 activation in the presence of paclitaxel and in turn protected cells from paclitaxel-induced apoptosis. Furthermore, we demonstrate that glycogen synthase kinase (GSK3) α/ß interacts with BOK and regulates its level post-translationally in breast cancer cells. Taken together, our results suggest that fine tuning of the levels of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 may decide the fate of cancer cells to either undergo apoptosis or proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL
...